login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182522 a(0) = 1; thereafter a(2*n + 1) = 3^n, a(2*n + 2) = 2 * 3^n. 9
1, 1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Row sums of triangle in A123149. - Philippe Deléham, May 04 2012
This is simply the classic sequence A038754 prefixed by a 1. - N. J. A. Sloane, Nov 23 2017
Binomial transform is A057960.
Range of row n of the circular Pascal array of order 6. - Shaun V. Ault, May 30 2014
a(n) is also the number of achiral color patterns in a row or cycle of length n using three or fewer colors. Two color patterns are the same if we permute the colors, so ABCAB=BACBA. For a cycle, we can rotate the colors, so ABCAB=CABAB. A row is achiral if it is the same as some color permutation of its reverse. Thus the reversal of ABCAB is BACBA, which is equivalent to ABCAB when we permute A and B. A cycle is achiral if it is the same as some rotation of some color permutation of its reverse. Thus CABAB reversed is BABAC. We can permute A and B to get ABABC and then rotate to get CABAB, so CABAB is achiral. It is interesting that the number of achiral color patterns is the same for rows and cycles. - Robert A. Russell, Mar 10 2018
LINKS
Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, arXiv:1407.2197 [math.CO], 2014.
Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Volume 332, October 2014, Pages 45-54.
Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
FORMULA
G.f.: (1 + x - x^2) / (1 - 3*x^2).
Expansion of 1 / (1 - x / (1 - x / (1 + x / (1 + x)))) in powers of x.
a(n+1) = A038754(n).
a(n) = Sum_{k=0..n} A123149(n,k). - Philippe Deléham, May 04 2012
a(n) = (3-(1+(-1)^n)*(3-2*sqrt(3))/2)*sqrt(3)^(n-3) for n>0, a(0)=1. - Bruno Berselli, Mar 19 2013
a(0) = 1, a(1) = 1, a(n) = a(n-1) + a(n-2) if n is odd, and a(n) = a(n-1) + a(n-2) + a(n-3) if n is even. - Jon Perry, Mar 19 2013
For odd n = 2m-1, a(2m-1) = T(m,1)+T(m,2)+T(m,3) for triangle T(m,k) of A140735; for even n = 2m, a(2m) = T(m,1)+T(m,2)+T(m,3) for triangle T(m,k) of A293181. - Robert A. Russell, Mar 10 2018
From Robert A. Russell, Oct 21 2018: (Start)
a(2m) = S2(m+3,3) - 4*S2(m+2,3) + 5*S2(m+1,3) - 2*S2(m,3).
a(2m-1) = S2(m+2,3) - 3*S2(m+1,3) + 2*S2(m,3), where S2(n,k) is the Stirling subset number A008277.
a(n) = 2*A001998(n-1) - A124302(n) = A124302(n) - 2*A107767(n-1) = A001998(n-1) - A107767(n-1).
a(n) = 2*A056353(n) - A002076(n) = A002076(n) - 2*A320743(n) = A056353(n) - A320743(n).
a(n) = A057427(n) + A052551(n-2) + A304973(n). (End)
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 18*x^6 + 27*x^7 + 54*x^8 + ...
From Robert A. Russell, Mar 10 2018: (Start)
For a(4) = 6, the achiral color patterns for rows are AAAA, AABB, ABAB, ABBA, ABBC, and ABCA. Note that for cycles AABB=ABBA and ABBC=ABCA. The achiral patterns for cycles are AAAA, AAAB, AABB, ABAB, ABAC, and ABBC. Note that AAAB and ABAC are not achiral rows.
For a(5) = 9, the achiral color patterns (for both rows and cycles) are AAAAA, AABAA, ABABA, ABBBA, AABCC, ABACA, ABBBC, ABCAB, and ABCBA. (End)
MATHEMATICA
Join[{1}, RecurrenceTable[{a[1]==1, a[2]==2, a[n]==3 a[n-2]}, a, {n, 40}]] (* Bruno Berselli, Mar 19 2013 *)
CoefficientList[Series[(1+x-x^2)/(1-3*x^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 14 2017 *)
Table[If[EvenQ[n], StirlingS2[(n+6)/2, 3] - 4 StirlingS2[(n+4)/2, 3] + 5 StirlingS2[(n+2)/2, 3] - 2 StirlingS2[n/2, 3], StirlingS2[(n+5)/2, 3] - 3 StirlingS2[(n+3)/2, 3] + 2 StirlingS2[(n+1)/2, 3]], {n, 0, 40}] (* Robert A. Russell, Oct 21 2018 *)
Join[{1}, Table[If[EvenQ[n], 2 3^((n-2)/2), 3^((n-1)/2)], {n, 40}]] (* Robert A. Russell, Oct 28 2018 *)
PROG
(PARI) {a(n) = if( n<1, n==0, n--; (n%2 + 1) * 3^(n \ 2))}
(Magma) I:=[1, 1, 2]; [n le 3 select I[n] else 3*Self(n-2): n in [1..40]]; // Bruno Berselli, Mar 19 2013
(Maxima) makelist(if n=0 then 1 else (1+mod(n-1, 2))*3^floor((n-1)/2), n, 0, 40); /* Bruno Berselli, Mar 19 2013 */
(PARI) my(x='x+O('x^50)); Vec((1+x-x^2)/(1-3*x^2)) \\ G. C. Greubel, Apr 14 2017
(SageMath)
def A182522(n): return (3 -(3-2*sqrt(3))*((n+1)%2))*3^((n-3)/2) + int(n==0)/3
[A182522(n) for n in range(41)] # G. C. Greubel, Jul 17 2023
CROSSREFS
Cf. A038754 (essentially the same sequence).
Also row sums of triangle in A169623.
Column 3 of A305749.
Cf. A124302 (oriented), A001998 (unoriented), A107767 (chiral), for rows, varying offsets.
Cf. A002076 (oriented), A056353 (unoriented), A320743 (chiral), for cycles.
Sequence in context: A018311 A018481 A038754 * A165647 A191398 A066313
KEYWORD
nonn,easy
AUTHOR
Michael Somos, May 03 2012
EXTENSIONS
Edited by Bruno Berselli, Mar 19 2013
Definition simplified by N. J. A. Sloane, Nov 23 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 27 13:50 EDT 2024. Contains 372019 sequences. (Running on oeis4.)