login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002076 Number of equivalence classes of base-3 necklaces of length n, where necklaces are considered equivalent under both rotations and permutations of the symbols.
(Formerly M0761 N0288)
12
1, 1, 2, 3, 6, 9, 26, 53, 146, 369, 1002, 2685, 7434, 20441, 57046, 159451, 448686, 1266081, 3588002, 10195277, 29058526, 83018783, 237740670, 682196949, 1961331314, 5648590737, 16294052602, 47071590147, 136171497650, 394427456121, 1143839943618, 3320824711205 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of set partitions of an oriented cycle of length n with 3 or fewer subsets. - Robert A. Russell, Nov 05 2018
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
FORMULA
Reference gives formula.
From Robert A. Russell, May 29 2018: (Start)
For n>0, a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 6] * (3*S2(n/d+2, 3) - 9*S2(n/d+1, 3) + 6*S2(n/d, 3)) + [d==3 mod 6] * (2*S2(n/d+2, 3) - 7*S2(n/d+1, 3) + 6*S2(n/d, 3)) + [d==2 mod 6 | d==4 mod 6] * (2*S2(n/d+2, 3) - 6*S2(n/d+1, 3) + 4*S2(n/d, 3)) + [d==1 mod 6 | d=5 mod 6] * (S2(n/d+2, 3) - 4*S2(n/d+1, 3) + 4*S2(n/d, 3))), where S2(n,k) is the Stirling subset number, A008277.
G.f.: 1 - Sum_{d>0} (phi(d) / d) * ([d==0 mod 6] * log(1-3x^d) +
[d==3 mod 6] * (log(1-3x^d) + log(1-x^d)) / 2 +
[d==2 mod 6 | d==4 mod 6] * 2*log(1-3x^d) / 3 +
[d==1 mod 6 | d=5 mod 6] * (log(1-3x^d) + 3*log(1-x^d)) / 6).
(End)
EXAMPLE
E.g., a(2) = 2 as there are two equivalence classes of the 9 strings {00,01,02,10,11,12,20,21,22}: {00,11,22} form one equivalence class and {01,02,10,12,20,21} form the other. To see that (for example) 01 and 02 are equivalent, rotate 01 to 10 and then subtract 1 mod 3 from each element in 10 to get 02.
For a(6)=26, there are 18 achiral patterns (AAAAAA, AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABABB, ABABAB, AAAABC, AAABAC, AAABCB, AABAAC, AABBCC, AABCBC, AABCCB, ABABAC, ABACBC, ABCABC) and 8 chiral patterns in four pairs (AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC). - Robert A. Russell, Nov 05 2018
MATHEMATICA
Adn[d_, n_] := Module[{ c, t1, t2}, t2 = 0; For[c = 1, c <= d, c++, If[Mod[d, c] == 0 , t2 = t2 + (x^c/c)*(E^(c*z) - 1)]]; t1 = E^t2; t1 = Series[t1, {z, 0, n+1}]; Coefficient[t1, z, n]*n!]; Pn[n_] := Module[{ d, e, t1}, t1 = 0; For[d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*Adn[d, n/d]/n]]; t1/(1 - x)]; Pnq[n_, q_] := Module[{t1}, t1 = Series[Pn[n], {x, 0, q+1}] ; Coefficient[t1, x, q]]; a[n_] := Pnq[n, 3]; Print[1]; Table[Print[an = a[n]]; an, {n, 1, 28}] (* Jean-François Alcover, Oct 04 2013, after N. J. A. Sloane's Maple code *)
(* This Mathematica program uses Gilbert and Riordan's recurrence formula, which they recommend for calculations: *)
Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
Join[{1}, Table[SeriesCoefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &] /(n (1 - x)), {x, 0, 3}], {n, 40}]] (* Robert A. Russell, Feb 24 2018 *)
From Robert A. Russell, May 29 2018: (Start)
Join[{1}, Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 6], 3 StirlingS2[n/#+2, 3] - 9 StirlingS2[n/#+1, 3] + 6 StirlingS2[n/#, 3], Divisible[#, 3], 2 StirlingS2[n/#+2, 3] - 7 StirlingS2[n/#+1, 3] + 6 StirlingS2[n/#, 3], Divisible[#, 2], 2 StirlingS2[n/#+2, 3] - 6 StirlingS2[n/#+1, 3] + 4 StirlingS2[n/#, 3], True, StirlingS2[n/#+2, 3] - 4 StirlingS2[n/#+1, 3] + 4 StirlingS2[n/#, 3]] &], {n, 40}]] (* or *)
mx = 40; CoefficientList[Series[1 - Sum[(EulerPhi[d] / d) Which[
Divisible[d, 6], Log[1 - 3x^d], Divisible[d, 3], (Log[1 - 3x^d] +
Log[1 - x^d]) / 2, Divisible[d, 2], 2 Log[1 - 3x^d] / 3, True, (Log[1 - 3x^d] + 3 Log[1 - x^d]) / 6], {d, 1, mx}], {x, 0, mx}], x]
(End)
(* Adnk(n, d, k) is coefficient of x^k in A(d, n)(x) from Gilbert & Riordan *)
Adnk[d_, n_, k_] := Adnk[d, n, k] = If[n>0 && k>0, Adnk[d, n-1, k]k + DivisorSum[d, Adnk[d, n-1, k-#]&], Boole[n==0 && k==0]]
k=3; Join[{1}, Table[Sum[DivisorSum[n, EulerPhi[#] Adnk[#, n/#, j] &], {j, k}]/n, {n, 40}]] (* Robert A. Russell, Nov 05 2018 *)
CROSSREFS
Cf. A056353 (unoriented), A320743 (chiral), A182522 (achiral).
Sequence in context: A111274 A133385 A349148 * A286435 A145761 A071714
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Better description and more terms from Mark Weston (mweston(AT)uvic.ca), Oct 06 2001
a(0)=1 prepended by Robert A. Russell, Nov 05 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 07:46 EDT 2024. Contains 372020 sequences. (Running on oeis4.)