login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135573 Array T(n,m) of super ballot numbers read along ascending antidiagonals. 11
1, 3, 1, 10, 2, 2, 35, 5, 3, 5, 126, 14, 6, 6, 14, 462, 42, 14, 10, 14, 42, 1716, 132, 36, 20, 20, 36, 132, 6435, 429, 99, 45, 35, 45, 99, 429, 24310, 1430, 286, 110, 70, 70, 110, 286, 1430, 92378, 4862, 858, 286, 154, 126, 154, 286, 858, 4862 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
First row is A000108. 2nd row is A007054. 3rd row and 4th column are essentially A007272.
1st column is A001700. 2nd column is essentially A000108. 3rd column is A007054.
Main diagonal is A000984.
LINKS
E. Allen and I. Gheorghiciuc, A Weighted Interpretation for the Super Catalan Numbers, J. Int. Seq. 17 (2014) # 14.10.7, Table 1.
Ira M. Gessel, Super ballot numbers, J. Symb. Comput. vol 14, iss 2-3 (1992) pp 179-194.
FORMULA
T(n, m) = (2*n + 1)!*(2*m)! / (n!*m!*(m + n + 1)!).
From Peter Luschny, Nov 03 2021: (Start)
T(n, m) = (1/(2*Pi))*Integral_{x=0..4} x^m*(4 - x)^(n + 1/2)*x^(-1/2). These are integral representations of the n-th moment of a positive function on [0, 4]. The representations are unique.
T(n, m) = 4^(m + n)*hypergeom([1/2 + n, 1/2 - m], [3/2 + n], 1)/((2*n + 1)*Pi).
For fixed n and m -> oo: T(n, m) ~ (1/(2*Pi))*4^(n + m + 1)*(Gamma(3/2 + n) / m^(3/2 + n))*(1 - (2*n + 3)^2 / (8*m)) . (End)
T(n, m) = (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2. - Peter Luschny, Nov 04 2021
From Peter Bala, Mar 12 2023: (Start)
T(n,m) = 2*(2*n + 1 )/(n + m + 1) * T(n-1,m) with T(0,m) = Catalan(m), where Catalan(m) = A000108(m).
T(n,m) = Sum_{k = 0..n} (-1)^k*4^(n-k)*binomial(n,k)*Catalan(m+k) (easily verified using Maple's sumrecursion command). Thus T(n,m) is an integer. (End)
EXAMPLE
Array with rows n >= 0 and columns m >= 0 starts:
[n\m] 0 1 2 3 4 5 6 7 8 ...
-------------------------------------------------------
[0] 1 1 2 5 14 42 132 429 1430 ... [A000108]
[1] 3 2 3 6 14 36 99 286 858 ... [A007054]
[2] 10 5 6 10 20 45 110 286 780 ... [A007272]
[3] 35 14 14 20 35 70 154 364 910 ... [A348893]
[4] 126 42 36 45 70 126 252 546 1260 ... [A348898]
[5] 462 132 99 110 154 252 462 924 1980 ... [A348899]
[6] 1716 429 286 286 364 546 924 1716 3432 ...
...
Seen as a triangle:
[0] 1;
[1] 3, 1;
[2] 10, 2, 2;
[3] 35, 5, 3, 5;
[4] 126, 14, 6, 6, 14;
[5] 462, 42, 14, 10, 14, 42;
[6] 1716, 132, 36, 20, 20, 36, 132;
[7] 6435, 429, 99, 45, 35, 45, 99, 429.
.
T(20, 100000) = 2.442634...*10^60129. Asymptotic formula: 2.442627..*10^60129.
MAPLE
T := proc(n, m) (2*n+1)!/n!*(2*m)!/m!/(m+n+1)! ; end proc:
for d from 0 to 12 do for c from 0 to d do printf("%d, ", T(d-c, c)) ; od: od:
# Alternatively, printed as rows:
A135573 := (n, m) -> (1/(2*Pi))*int(x^m*(4-x)^(n+1/2)*x^(-1/2), x=0..4):
for n from 0 to 9 do seq(A135573(n, m), m = 0..9) od; # Peter Luschny, Nov 03 2021
MATHEMATICA
T[n_, m_] := (2*n+1)!/n!*(2*m)!/m!/(m+n+1)!; Table[T[n-m, m], {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
T[n_, m_] := 4^(m+n) Hypergeometric2F1[1/2+n, 1/2-m, 3/2+n, 1] / ((2 n + 1) Pi);
Table[T[n - m + 1, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Peter Luschny, Nov 03 2021 *)
PROG
(Sage)
def T(n, m): return (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2
for n in range(7): print([T(n, m) for m in range(9)]) # Peter Luschny, Nov 04 2021
CROSSREFS
Cf. A000984 (main diagonal), A001700 (column 0), A082590 (sum of antidiagonals).
Sequence in context: A331155 A008299 A016478 * A257254 A126953 A134284
KEYWORD
easy,nonn,tabl
AUTHOR
R. J. Mathar, Feb 23 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 18:06 EDT 2024. Contains 372277 sequences. (Running on oeis4.)