The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135573 Array T(n,m) of super ballot numbers read along ascending antidiagonals. 11

%I #39 Mar 13 2023 07:22:34

%S 1,3,1,10,2,2,35,5,3,5,126,14,6,6,14,462,42,14,10,14,42,1716,132,36,

%T 20,20,36,132,6435,429,99,45,35,45,99,429,24310,1430,286,110,70,70,

%U 110,286,1430,92378,4862,858,286,154,126,154,286,858,4862

%N Array T(n,m) of super ballot numbers read along ascending antidiagonals.

%C First row is A000108. 2nd row is A007054. 3rd row and 4th column are essentially A007272.

%C 1st column is A001700. 2nd column is essentially A000108. 3rd column is A007054.

%C Main diagonal is A000984.

%H G. C. Greubel, <a href="/A135573/b135573.txt">Table of n, a(n) for the first 50 antidiagonals</a>

%H E. Allen and I. Gheorghiciuc, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Allen/gheo.html">A Weighted Interpretation for the Super Catalan Numbers</a>, J. Int. Seq. 17 (2014) # 14.10.7, Table 1.

%H Ira M. Gessel, <a href="http://dx.doi.org/10.1016/0747-7171(92)90034-2">Super ballot numbers</a>, J. Symb. Comput. vol 14, iss 2-3 (1992) pp 179-194.

%F T(n, m) = (2*n + 1)!*(2*m)! / (n!*m!*(m + n + 1)!).

%F From _Peter Luschny_, Nov 03 2021: (Start)

%F T(n, m) = (1/(2*Pi))*Integral_{x=0..4} x^m*(4 - x)^(n + 1/2)*x^(-1/2). These are integral representations of the n-th moment of a positive function on [0, 4]. The representations are unique.

%F T(n, m) = 4^(m + n)*hypergeom([1/2 + n, 1/2 - m], [3/2 + n], 1)/((2*n + 1)*Pi).

%F For fixed n and m -> oo: T(n, m) ~ (1/(2*Pi))*4^(n + m + 1)*(Gamma(3/2 + n) / m^(3/2 + n))*(1 - (2*n + 3)^2 / (8*m)) . (End)

%F T(n, m) = (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2. - _Peter Luschny_, Nov 04 2021

%F From _Peter Bala_, Mar 12 2023: (Start)

%F T(n,m) = 2*(2*n + 1 )/(n + m + 1) * T(n-1,m) with T(0,m) = Catalan(m), where Catalan(m) = A000108(m).

%F T(n,m) = Sum_{k = 0..n} (-1)^k*4^(n-k)*binomial(n,k)*Catalan(m+k) (easily verified using Maple's sumrecursion command). Thus T(n,m) is an integer. (End)

%e Array with rows n >= 0 and columns m >= 0 starts:

%e [n\m] 0 1 2 3 4 5 6 7 8 ...

%e -------------------------------------------------------

%e [0] 1 1 2 5 14 42 132 429 1430 ... [A000108]

%e [1] 3 2 3 6 14 36 99 286 858 ... [A007054]

%e [2] 10 5 6 10 20 45 110 286 780 ... [A007272]

%e [3] 35 14 14 20 35 70 154 364 910 ... [A348893]

%e [4] 126 42 36 45 70 126 252 546 1260 ... [A348898]

%e [5] 462 132 99 110 154 252 462 924 1980 ... [A348899]

%e [6] 1716 429 286 286 364 546 924 1716 3432 ...

%e ...

%e Seen as a triangle:

%e [0] 1;

%e [1] 3, 1;

%e [2] 10, 2, 2;

%e [3] 35, 5, 3, 5;

%e [4] 126, 14, 6, 6, 14;

%e [5] 462, 42, 14, 10, 14, 42;

%e [6] 1716, 132, 36, 20, 20, 36, 132;

%e [7] 6435, 429, 99, 45, 35, 45, 99, 429.

%e .

%e T(20, 100000) = 2.442634...*10^60129. Asymptotic formula: 2.442627..*10^60129.

%p T := proc(n,m) (2*n+1)!/n!*(2*m)!/m!/(m+n+1)! ; end proc:

%p for d from 0 to 12 do for c from 0 to d do printf("%d, ",T(d-c,c)) ; od: od:

%p # Alternatively, printed as rows:

%p A135573 := (n, m) -> (1/(2*Pi))*int(x^m*(4-x)^(n+1/2)*x^(-1/2), x=0..4):

%p for n from 0 to 9 do seq(A135573(n, m), m = 0..9) od; # _Peter Luschny_, Nov 03 2021

%t T[n_, m_] := (2*n+1)!/n!*(2*m)!/m!/(m+n+1)!; Table[T[n-m, m], {n, 0, 12}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 06 2014, after Maple *)

%t T[n_, m_] := 4^(m+n) Hypergeometric2F1[1/2+n, 1/2-m, 3/2+n, 1] / ((2 n + 1) Pi);

%t Table[T[n - m + 1, m], {n, 0, 9}, {m, 0, n}] // Flatten (* _Peter Luschny_, Nov 03 2021 *)

%o (Sage)

%o def T(n, m): return (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2

%o for n in range(7): print([T(n, m) for m in range(9)]) # _Peter Luschny_, Nov 04 2021

%Y Cf. A000108, A007054, A000984, A348893, A348898, A348899.

%Y Cf. A000984 (main diagonal), A001700 (column 0), A082590 (sum of antidiagonals).

%K easy,nonn,tabl

%O 0,2

%A _R. J. Mathar_, Feb 23 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 12:29 EDT 2024. Contains 372788 sequences. (Running on oeis4.)