login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001655 Fibonomial coefficients: a(n) = F(n+1)*F(n+2)*F(n+3)/2, where F() = Fibonacci numbers A000045.
(Formerly M2988 N1208)
14
1, 3, 15, 60, 260, 1092, 4641, 19635, 83215, 352440, 1493064, 6324552, 26791505, 113490195, 480752895, 2036500788, 8626757644, 36543528780, 154800876945, 655747029795, 2777789007071, 11766903040368, 49845401197200, 211148507782800, 894439432403425 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In a triangle having sides of F(n+1), 2*F(n+2) and F(n+3), the product of the area and circumradius will be a(n). For example: a triangle having sides of 5, 16 and 13 will have an area of 4*sqrt(51), a circumradius of 65*sqrt(51)/51, and the product is 4*65 = 260. - Gary Detlefs, Dec 14 2010
Explanation of this comment: if a triangle with sides (a, b, c) has a circumradius R and an area A, then A*R = abc/4; here, with a = F(n+1), b=2*F(n+2) and c=F(n+3), this gives a(n)= A*R. - Bernard Schott, Jan 26 2023
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
David Treeby, Further Physical Derivations of Fibonacci Summations, Fibonacci Quart. 54 (2016), no. 4, 327-334.
FORMULA
G.f.: 1/(1-3*x-6*x^2+3*x^3+x^4) = 1/((1+x-x^2)*(1-4*x-x^2)) (see Comments to A055870).
a(n) = A010048(n+3, 3) = fibonomial(n+3, 3).
a(n) = (1/2) * A065563(n).
a(n) = 4*a(n-1) + a(n-2) + ((-1)^n)*F(n+1), n >= 2; a(0)=1, a(1)=3.
a(n) = (F(n+3)^3 - F(n+2)^3 - F(n+1)^3)/6. - Gary Detlefs, Dec 24 2010
a(n-1) = Sum_{k=0..n} F(k+1)*F(k)^2, n >= 1. - Wolfdieter Lang, Aug 01 2012
From Wolfdieter Lang, Aug 09 2012: (Start)
a(n-1)*(-1)^n = Sum_{k=0..n} (-1)^k*F(k+1)^2*F(k), n >= 1. See the link under A215037, eq. (25).
a(n) = (F(3*(n+2)) + 2*(-1)^n*F(n+2))/10, n >= 0. See the same link, eq. (32). (End)
a(n) = -a(-4-n)*(-1)^n for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(-a(n+1) - a(n+2)) + a(n+1)*(-3*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
O.g.f.: exp( Sum_{n >= 1} L(n)*L(2*n)*x^n/n ), where L(n) = A000032(n) is a Lucas number. Cf. A114525, A256178. - Peter Bala, Mar 18 2015
Sum_{n>=0} (-1)^n/a(n) = 2 * A079586 - 6. - Amiram Eldar, Oct 04 2020
The formula by Gary Detlefs above is valid for all sequences of the Fibonacci type f(n) = f(n-1) + f(n-2): 3*f(n+2)*f(n+1)*f(n) = f(n+2)^3 - f(n+1)^3 - f(n)^3. - Klaus Purath, Mar 25 2021
a(n) = sqrt(Sum_{j=1..n+1} F(j)^3*F(j+1)^3). See Treeby link. - Michel Marcus, Apr 10 2022
a(n) = Sum_{k=1..n+1} A000129(k)*A056570(n+2-k). - Michael A. Allen, Jan 25 2023
EXAMPLE
G.f. = 1 + 3*x + 15*x^2 + 60*x^3 + 260*x^4 + 1092*x^5 + 4641*x^6 + ...
MAPLE
A001655:=1/(z**2-z-1)/(z**2+4*z-1); # Simon Plouffe in his 1992 dissertation.
MATHEMATICA
Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1])/2, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
LinearRecurrence[{3, 6, -3, -1}, {1, 3, 15, 60}, 25] (* Jean-François Alcover, Sep 23 2017 *)
PROG
(PARI) b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 3)) \\ Joerg Arndt, May 08 2016
(Magma) [Fibonacci(n+3)*Fibonacci(n+2)*Fibonacci(n+1)/2: n in [0..30]]; // Vincenzo Librandi, May 09 2016
CROSSREFS
Cf. A066258 (first differences), A215037 (partial sums), A363753 (alternating sums).
Sequence in context: A058748 A049314 A295505 * A058749 A292483 A218227
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 27 07:58 EDT 2024. Contains 372009 sequences. (Running on oeis4.)