The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A362744 Number of parking functions of size n avoiding the patterns 312 and 321. 2

%I #32 Apr 13 2024 09:15:55

%S 1,1,3,13,63,324,1736,9589,54223,312369,1826847,10818156,64737684,

%T 390877456,2378312780,14568360645,89766137967,556008951667,

%U 3459976045201,21621154097573,135619427912599,853590782088272,5389272616262656,34123058549079788,216621704634708868

%N Number of parking functions of size n avoiding the patterns 312 and 321.

%H Alois P. Heinz, <a href="/A362744/b362744.txt">Table of n, a(n) for n = 0..1211</a>

%H Ayomikun Adeniran and Lara Pudwell, <a href="https://doi.org/10.54550/ECA2023V3S3R17">Pattern avoidance in parking functions</a>, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.

%H Jun Yan, <a href="http://arxiv.org/2404.07958">Results on pattern avoidance in parking functions</a>, arXiv preprint arXiv:2404.07958 [math.CO], 2024. See Theorem 3.4.

%F Consider a Dyck path of semilength n to be a path from (0,0) to (n,n) consisting of N=(0,1) steps and E=(1,0) steps, staying weakly above y=x and let D(n) be the set of all such paths.

%F For any Dyck path d, let w(d) be the word of positive integers that records the lengths of the maximal consecutive strings of N-steps in d, let w(d)_i be the i-th entry of w(d), and let |w(d)| be the length of d.

%F a(n) = Sum_{d in D(n)} Product_{i=1..|w(d)|-1} (w(d)_i+1).

%F a(n) ~ 23 * 3^(3*n + 3/2) / (25 * sqrt(Pi) * 2^(2*n + 3) * n^(3/2)). - _Vaclav Kotesovec_, May 02 2023

%F From _Jun Yan_, Apr 13 2024: (Start)

%F a(n) = binomial(3*n + 1, n)/(n + 1) - Sum_{k=0..n-1} binomial(3*n - 3*k + 1, n - k) / (2^(k + 1)*(n - k + 1)).

%F G.f.: ((1 - x)*A(x) + 1)/(2 - x), where A(x) is the g.f. of A006013. (End)

%e The a(3) = 13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}.

%e When n = 3 there are 5 Dyck paths:

%e w(NNNEEE) = [3], contributing 1 to the sum;

%e w(NNENEE) = [2,1], contributing 2+1 = 3 to the sum;

%e w(NNEENE) = [2,1], contributing 2+1 = 3 to the sum;

%e w(NENNEE) = [1,2], contributing 1+1 = 2 to the sum;

%e w(NENENE) = [1,1,1], contributing (1+1)(1+1) = 4 to the sum.

%e Therefore, a(3) = 1+3+3+2+4 = 13.

%p b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,

%p `if`(x=y, 1, b(x-1, y-1, 0)*(t+1)+b(x-1, y+1, t+1)))

%p end:

%p a:= n-> b(2*n, 0$2):

%p seq(a(n), n=0..24); # _Alois P. Heinz_, May 02 2023

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n<2, 1, (2*(667*n^4-1439*n^3+656*n^2

%p +146*n-96)*a(n-1)-3*(3*n-4)*(3*n-2)*(23*n^2-6*n-5)*a(n-2))/

%p (4*(2*n+1)*(n+1)*(23*n^2-52*n+24)))

%p end:

%p seq(a(n), n=0..24); # _Alois P. Heinz_, May 02 2023

%Y Cf. A000108, A006013, A362595, A362596, A362597, A362741.

%K nonn

%O 0,3

%A _Lara Pudwell_, May 01 2023

%E a(13)-a(24) from _Alois P. Heinz_, May 02 2023

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 21:13 EDT 2024. Contains 372920 sequences. (Running on oeis4.)