login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A362744 Number of parking functions of size n avoiding the patterns 312 and 321. 2
1, 1, 3, 13, 63, 324, 1736, 9589, 54223, 312369, 1826847, 10818156, 64737684, 390877456, 2378312780, 14568360645, 89766137967, 556008951667, 3459976045201, 21621154097573, 135619427912599, 853590782088272, 5389272616262656, 34123058549079788, 216621704634708868 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
Jun Yan, Results on pattern avoidance in parking functions, arXiv preprint arXiv:2404.07958 [math.CO], 2024. See Theorem 3.4.
FORMULA
Consider a Dyck path of semilength n to be a path from (0,0) to (n,n) consisting of N=(0,1) steps and E=(1,0) steps, staying weakly above y=x and let D(n) be the set of all such paths.
For any Dyck path d, let w(d) be the word of positive integers that records the lengths of the maximal consecutive strings of N-steps in d, let w(d)_i be the i-th entry of w(d), and let |w(d)| be the length of d.
a(n) = Sum_{d in D(n)} Product_{i=1..|w(d)|-1} (w(d)_i+1).
a(n) ~ 23 * 3^(3*n + 3/2) / (25 * sqrt(Pi) * 2^(2*n + 3) * n^(3/2)). - Vaclav Kotesovec, May 02 2023
From Jun Yan, Apr 13 2024: (Start)
a(n) = binomial(3*n + 1, n)/(n + 1) - Sum_{k=0..n-1} binomial(3*n - 3*k + 1, n - k) / (2^(k + 1)*(n - k + 1)).
G.f.: ((1 - x)*A(x) + 1)/(2 - x), where A(x) is the g.f. of A006013. (End)
EXAMPLE
The a(3) = 13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}.
When n = 3 there are 5 Dyck paths:
w(NNNEEE) = [3], contributing 1 to the sum;
w(NNENEE) = [2,1], contributing 2+1 = 3 to the sum;
w(NNEENE) = [2,1], contributing 2+1 = 3 to the sum;
w(NENNEE) = [1,2], contributing 1+1 = 2 to the sum;
w(NENENE) = [1,1,1], contributing (1+1)(1+1) = 4 to the sum.
Therefore, a(3) = 1+3+3+2+4 = 13.
MAPLE
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=y, 1, b(x-1, y-1, 0)*(t+1)+b(x-1, y+1, t+1)))
end:
a:= n-> b(2*n, 0$2):
seq(a(n), n=0..24); # Alois P. Heinz, May 02 2023
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 1, (2*(667*n^4-1439*n^3+656*n^2
+146*n-96)*a(n-1)-3*(3*n-4)*(3*n-2)*(23*n^2-6*n-5)*a(n-2))/
(4*(2*n+1)*(n+1)*(23*n^2-52*n+24)))
end:
seq(a(n), n=0..24); # Alois P. Heinz, May 02 2023
CROSSREFS
Sequence in context: A026715 A001850 A130525 * A350519 A243280 A000259
KEYWORD
nonn
AUTHOR
Lara Pudwell, May 01 2023
EXTENSIONS
a(13)-a(24) from Alois P. Heinz, May 02 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 09:38 EDT 2024. Contains 372302 sequences. (Running on oeis4.)