The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343950 Number of ways to write n as x + y + z with x^2 + 4*y^2 + 5*z^2 a square, where x,y,z are positive integers with y or z a positive power of two. 3
0, 0, 0, 1, 1, 0, 0, 3, 1, 2, 2, 2, 3, 1, 4, 3, 2, 3, 3, 4, 4, 2, 1, 4, 6, 4, 2, 3, 12, 5, 3, 5, 8, 4, 5, 5, 8, 4, 7, 4, 4, 4, 7, 5, 5, 1, 4, 6, 5, 6, 6, 10, 7, 4, 9, 5, 10, 16, 7, 7, 9, 6, 5, 5, 14, 8, 6, 6, 3, 7, 1, 5, 4, 10, 5, 7, 10, 8, 13, 10, 3, 4, 8, 5, 12, 7, 20, 9, 12, 5, 8, 1, 9, 4, 8, 9, 8, 7, 4, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
Conjecture 1: a(n) > 0 for all n > 7.
We have verified a(n) > 0 for all n = 8..50000. Clearly, a(2*n) > 0 if a(n) > 0.
Conjecture 2: For any integer n > 7, we can write n as x + y + z with x,y,z positive integers such that x^2 + 2*y^2 + 3*z^2 is a square.
Conjecture 3: For any integer n > 4, we can write n as x + y + z with x,y,z positive integers such that 3*x^2 + 4*y^2 + 5*z^2 (or x^2 + 3*y^2 + 5*z^2) is a square.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
EXAMPLE
a(4) = 1, and 4 = 1 + 1 + 2 with 1^2 + 4*1^2 + 5*2^2 = 5^2.
a(5) = 1, and 5 = 2 + 2 + 1 with 2^2 + 4*2^2 + 5*1^2 = 5^2.
a(9) = 1, and 9 = 4 + 1 + 4 with 4^2 + 4*1^2 + 5*4^2 = 10^2.
a(14) = 1, and 14 = 7 + 5 + 2 with 7^2 + 4*5^2 + 5*2^2 = 13^2.
a(23) = 1, and 23 = 7 + 8 + 8 with 7^2 + 4*8^2 + 5*8^2 = 25^2.
a(46) = 1, and 46 = 14 + 16 + 16 with 14^2 + 4*16^2 + 5*16^2 = 50^2.
a(71) = 1, and 71 = 42 + 8 + 21 with 42^2 + 4*8^2 + 5*21^2 = 65^2.
a(92) = 1, and 92 = 28 + 32 + 32 with 28^2 + 4*32^2 + 5*32^2 = 100^2.
a(142) = 1, and 142 = 84 + 16 + 42 with 84^2 + 4*16^2 + 5*42^2 = 130^2.
MATHEMATICA
PowQ[n_]:=PowQ[n]=n>1&&IntegerQ[Log[2, n]];
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[(PowQ[y]||PowQ[n-x-y])&&SQ[x^2+4*y^2+5*(n-x-y)^2], r=r+1], {x, 1, n-3}, {y, 1, n-1-x}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
CROSSREFS
Sequence in context: A029418 A185736 A144148 * A085247 A003016 A328848
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 05 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 03:29 EDT 2024. Contains 373089 sequences. (Running on oeis4.)