The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271510 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x >= y >= 0, z >= 0 and w >= 0 such that x^2 + 8*y^2 + 16*z^2 is a square. 53
1, 3, 3, 2, 4, 4, 1, 1, 3, 4, 5, 2, 3, 5, 2, 1, 4, 5, 5, 3, 4, 2, 2, 1, 1, 8, 5, 4, 4, 4, 2, 2, 3, 3, 7, 2, 6, 7, 3, 3, 5, 6, 4, 6, 2, 4, 4, 1, 3, 6, 9, 4, 8, 5, 6, 2, 2, 6, 10, 4, 1, 5, 3, 7, 4, 10, 3, 5, 5, 2, 4, 1, 5, 6, 7, 2, 6, 1, 7, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 7, 23, 71, 77, 105, 191, 215, 311, 335, 2903, 4^k*q (k = 0,1,2,... and q = 6, 15, 47, 138).
(ii) Any natural number can be written as x^2 + y^2 + z^2 + w^2 with x >= y >= 0, z >=0 and w >= 0 such that 4*x^2 + 21*y^2 + 24*z^2 (or 5*x^2 + 40*y^2 + 4*z^2, 20*x^2 + 85*y^2 +16*z^2, 25*x^2 + 480*y^2 + 96*z^2, 36*x^2 + 45*y^2 + 40*z^2, 40*x^2 + 72*y^2 + 9*z^2) is a square.
(iii) For any ordered pair (b, c) = (48, 112), (63, 7), (112, 1008), (136, 24), (136, 216), (360, 40), (840, 280), (1008, 112), each natural number can be written as x^2 + y^2 + z^2 + w^2 with x >= y >= 0, z >=0 and w >= 0 such that 9*x^2 + b*y^2 + c*z^2 is a square.
(iv) For any ordered pair (b, c) = (80, 25), (81, 48), (144, 9), (144, 153), (177, 48), each natural number can be written as x^2 + y^2 + z^2 + w^2 with x >= y >= 0, z >=0 and w >= 0 such that 16*x^2 + b*y^2 + c*z^2 is a square.
This conjecture is much stronger than Lagrange's four-square theorem. It is apparent that a(m^2*n) >= a(n) for all m,n = 1,2,3,....
See also A271513 and A271518 for related conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. Also available from arXiv:1604.06723 [math.NT], 2016-2017.
EXAMPLE
a(6) = 1 since 6 = 1^2 + 1^2 + 0^2 + 2^2 with 1 = 1 and 1^2 + 8*1^2 + 16*0^2 = 3^2.
a(7) = 1 since 7 = 1^2 + 1^2 + 1^2 + 2^2 with 1 = 1 and 1^2 + 8*1^2 + 16*1^2 = 5^2.
a(15) = 1 since 15 = 3^2 + 1^2 + 2^2 + 1^2 with 3 > 1 and 3^2 + 8*1^2 + 16*2^2 = 9^2.
a(23) = 1 since 23 = 3^2 + 1^2 + 2^2 + 3^2 with 3 > 1 and 3^2 + 8*1^2 + 16*2^2 = 9^2.
a(47) = 1 since 47 = 3^2 + 2^2 + 5^2 + 3^2 with 3 > 2 and 3^2 + 8*2^2 + 16*5^2 = 21^2.
a(71) = 1 since 71 = 7^2 + 2^2 + 3^2 + 3^2 with 7 > 2 and 7^2 + 8*2^2 + 16*3^2 = 15^2.
a(77) = 1 since 77 = 5^2 + 4^2 + 6^2 + 0^2 with 5 > 4 and 5^2 + 8*4^2 + 16*6^2 = 27^2.
a(105) = 1 since 105 = 6^2 + 2^2 + 4^2 + 7^2 with 6 > 2 and 6^2 + 8*2^2 + 16*4^2 = 18^2.
a(138) = 1 since 138 = 3^2 + 2^2 + 5^2 + 10^2 with 3 > 2 and 3^2 + 8*2^2 + 16*5^2 = 21^2.
a(191) = 1 since 191 = 9^2 + 3^2 + 1^2 + 10^2 with 9 > 3 and 9^2 + 8*3^2 + 16*1^2 = 13^2.
a(215) = 1 since 215 = 11^2 + 7^2 + 6^2 + 3^2 with 11 > 7 and 11^2 + 8*7^2 + 16*6^2 = 33^2.
a(311) = 1 since 311 = 15^2 + 6^2 + 1^2 + 7^2 with 15 > 6 and 15^2 + 8*6^2 + 16*1^2 = 23^2.
a(335) = 1 since 335 = 17^2 + 1^2 + 3^2 + 6^2 with 17 > 1 and 17^2 + 8*1^2 + 16*3^2 = 21^2.
a(2903) = 1 since 2903 = 49^2 + 14^2 + 15^2 + 9^2 with 49 > 14 and 49^2 + 8*14^2 + 16*15^2 = 87^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x^2+8y^2+16z^2], r=r+1], {y, 0, Sqrt[n/2]}, {x, y, Sqrt[n-y^2]}, {z, 0, Sqrt[n-x^2-y^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
CROSSREFS
Sequence in context: A106686 A106702 A303338 * A349661 A282545 A306471
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 09 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 06:42 EDT 2024. Contains 373145 sequences. (Running on oeis4.)