The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290997 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^3 - S^6. 4
0, 0, 1, 3, 6, 12, 27, 63, 143, 315, 684, 1479, 3195, 6903, 14932, 32361, 70266, 152775, 332397, 723330, 1573829, 3423444, 7444722, 16185939, 35185779, 76483890, 166253545, 361396431, 785621808, 1707884880, 3712912632, 8071922817, 17548551692, 38150905170 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.
LINKS
FORMULA
a(n) = 6*a(n-1) - 15*a(n-2) + 21*a(n-3) - 18*a(n-4) + 9*a(n-5) - a(n-6) for n >= 7.
G.f.: x^2*(1 - 3*x + 3*x^2) / (1 - 6*x + 15*x^2 - 21*x^3 + 18*x^4 - 9*x^5 + x^6). - Colin Barker, Aug 22 2017
MATHEMATICA
z = 60; s = x/(1-x); p= 1 -s^3 -s^6;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290997 *)
LinearRecurrence[{6, -15, 21, -18, 9, -1}, {0, 0, 1, 3, 6, 12}, 40] (* G. C. Greubel, Apr 14 2023 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1-3*x+3*x^2)/(1-6*x+15*x^2-21*x^3 + 18*x^4-9*x^5+x^6) + O(x^50))) \\ Colin Barker, Aug 22 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0, 0] cat Coefficients(R!( x^2*(1-3*x+3*x^2)/(1-6*x+15*x^2-21*x^3 + 18*x^4-9*x^5+x^6) )); // G. C. Greubel, Apr 14 2023
(SageMath)
def A290997_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^2*(1-3*x+3*x^2)/(1-6*x+15*x^2-21*x^3 + 18*x^4-9*x^5+x^6) ).list()
A290997_list(40) # G. C. Greubel, Apr 14 2023
CROSSREFS
Sequence in context: A268681 A101013 A088688 * A052103 A072168 A292290
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 22 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 06:43 EDT 2024. Contains 372528 sequences. (Running on oeis4.)