The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282628 Triangle T(n, k) read by rows: row n gives for n >= 0 the coefficients of the exponential numerator polynomial used for the exponential generating function of {Sum_{j=1..m} (1 + 2*j)^n}_{m>=0}. 1
1, 1, 1, 1, 3, 2, 1, 9, 16, 8, 1, 27, 98, 120, 48, 1, 81, 544, 1232, 1152, 384, 1, 243, 2882, 10800, 17760, 13440, 3840, 1, 729, 14896, 87128, 224640, 289920, 184320, 46080, 1, 2187, 75938, 669480, 2544528, 4986240, 5295360, 2903040, 645120, 1, 6561, 384064, 4990112, 26917632, 75204864, 118702080, 107089920, 51609600, 10321920 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
-1,5
COMMENTS
The n = -1 row with T(-1, 0) = 1 has been added in order to have a triangle, and is not used.
For n >= 0 the exponential row polynomials are R(n, t) = Sum_{k=0..n+1} T(n, k)*t^k/k!.
The e.g.f. Eodd(n, t) = Sum_{m >= 0} Sodd(n, m)*t^m/m! with Sodd(n, m) = Sum_{j=0..m} (1+2*j)^n is R(n, t)*exp(t), for n >= 0.
This triangle is the e.g.f. companion of A060187 which gives the coefficients of the row polynomials for the o.g.f.s of {Sodd(n, m)}_{m>=0}, which are
G(n, x) = Sum_{k=0..n} A060187(n+1,k+1) * x^k / (1 - x)^(n+2), for n >= 0.
The inverse Laplace transform L^[-1] is used to obtain the present triangle from A060187. To accomplish this the following reordering identity is used:
(Sum_{j=0..n} a(n, j)*x^j)/(1-x)^(n+1) = Sum_{k=0..n} (b(n, k)*x^k/(1-x)^(k+1)), with b(n, k) = Sum_{p=0..min(k,n)} binomial(n-p, k-p)*a(n, p), for n >= 0. This can be proved by multiplying with (1-x)^(n+1) and using the binomial theorem to find first a(n, j) = Sum_{i=0..min(n,j)} (-1)^(j-i)*binomial(n-i, j-i)*b(n,i). This is then inverted by using the binomial identity (5.24) of Graham et al., p. 169, to find b in terms of a.
This leads finally to the inverse Laplace transform formula L^[-1]{(Sum_{j=0..n} a(n, j) * x^j) / (1-x)^(n+1)} = exp(t)*Sum_{k=0..n} b(n, k)*t^k/k!, for n >= 0, with the given expression for b(n, k). This is then applied on the o.g.f. G(n, x) given above.
On can obtain Sodd(n, m) in two ways from S(n,m) = Sum_{j=1..n} j^n by bisection of the j sum: Sodd(n, m) = S(n, 2*(m+1)) - 2^n*S(n, m+1) = S(n, 2*m+1) - 2^n*S(n, m).
The first columns of the triangle are A000012, A000244, 2*A005059, 8*A017389, 48*A028060, ...
The diagonal for n >= 0 is A000165. This is compatible with the second formula for T(n, k) given below.
For the generated sequences for n = 0..4 see A000027, A000290, A000447, A002593, A002309.
(with different offsets).
REFERENCES
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2nd ed.; Addison-Wesley, 1994, p. 169, eq. (5.24).
LINKS
FORMULA
T(n, k) = 0 for k > n+1, T(-1, 0) = 1, and
T(n ,k) = Sum_{j=0..min(n+1,k)} binomial(n+1-j,k-j)*A060187(n+1,j+1), for n >= 0 and k = 0..n+1.
T(n, k) = Sum_{j=0..k} (-1)^(k-j) * binomial(k-1, j-1) * (2*j+1)^n, for n >= 0 and k = 0..n+1 (if one puts here binomial(-1, -1) = 1).
EXAMPLE
The triangle T(n, k) begins (row n=-1 is not used):
n\k 0 1 2 3 4 5 6 7 8
-1: 1
+0: 1 1
+1: 1 3 2
+2: 1 9 16 8
+3: 1 27 98 120 48
+4: 1 81 544 1232 1152 384
+5: 1 243 2882 10800 17760 13440 3840
+6: 1 729 14896 87128 224640 289920 184320 46080
+7: 1 2187 75938 669480 2544528 4986240 5295360 2903040 645120
...
row n=8: 1 6561 384064 4990112 26917632 75204864 118702080 107089920 51609600 10321920,
row n=9: 1 19683 1933442 36467040 272199360 1042594560 2295175680 3030773760 2376622080 1021870080 185794560. ...
n = 0: Eodd(0, t) = R(0, t)*exp(t) = (1 + 1*t)*exp(t). G(0, x) = 1/(1 - x)^2.
n = 2: Eodd(3, t) = (1 + 9*t + 16*t^2/2! + 8*t^3/3!)*exp(t), G(2, x) = (1 + 6*x + x^2)/(1 - x)^4.
MATHEMATICA
Table[Sum[(-1)^(k - j) Binomial[k - 1, j - 1] (2 j + 1)^n, {j, 0, k}], {n, -1, 8}, {k, 0, n + 1}] // Flatten (* Michael De Vlieger, Mar 17 2017 *)
PROG
(PARI) {for(n=-1, 8, for(k=0, n + 1, print1(if(k==0, 1, sum(j=0, k, (-1)^(k - j) * binomial(k - 1, j - 1) * (2*j + 1)^n)), ", "); ); print(); ); } \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A060187, A000165 (diagonal).
Columns: A000012, A000244, 2*A005059, 8*A017389, 48*A028060.
Cf. Generated sequences (with offset differing): A000027, A000290, A000447, A002593, A002309.
Sequence in context: A162976 A336977 A106338 * A262554 A129964 A267328
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Mar 14 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 17:28 EDT 2024. Contains 372522 sequences. (Running on oeis4.)