The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275654 a(n) = (5*n)!/((3*n)!*n!^2) * ((3*n/2)!*(7*n/2)!)/(5*n/2)!^2. 7
1, 28, 2646, 316540, 42031990, 5921058528, 866486466720, 130220534668224, 19958454291525750, 3105489721784166640, 489023391870111994896, 77758775451291032116200, 12464212878673327376454304, 2011515147856766922731424000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^(n+k)*binomial(5*n + k,5*n - k)*binomial(2*k,k)*binomial(2*n - k,n) = (5*n)!/((3*n)!*n!^2) * ((3*n/2)!*(7*n/2)!)/(5*n/2)!^2.
We also have Sum_{k = 0..5*n} (-1)^k*binomial(5*n + k,5*n - k)* binomial(2*k,k) *binomial(2*n - k,n) = (5*n)!/((3*n)!*n!^2) * ((3*n/2)!*(7*n/2)!)/(5*n/2)!^2.
Compare with Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n + k,2*n - k)*binomial(2*k,k)*binomial(2*n - k,n) = binomial(2*n,n)^2 = A002894(n). See also A275652, A275653 and A275655.
LINKS
FORMULA
a(n) = (3*n/2)!*(5*n)!*(7*n/2)!/(n!^2*(3*n)!*(5*n/2)!^2).
Recurrence: 3*a(n)*n^2*(n - 1)^2*(3*n - 1)*(3*n - 5)*(5*n - 2)*(5*n - 4)*(5*n - 6)*(5*n - 8) = 7*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)*(7*n - 2)*(7*n - 4)*(7*n - 6)*(7*n - 8)*(7*n - 10)*(7*n - 12)*a(n-2).
a(n) = [x^n] G(x)^(7*n) where G(x) = 1 + 4*x + 85*x^2+ 4220*x^3 + 283285*x^4 + 22308156*x^5 + 1939419083*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^7, where F(x) = 1 + 4*x + 197*x^2 + 15840*x^3 + 1580819*x^4 + 178220584*x^5 + 21729476664*x^6 + ... appears to have integer coefficients.
a(n) ~ 7^(7*n/2+1/2)/(2*sqrt(5)*Pi*3^(3*n/2)*n). - Ilya Gutkovskiy, Aug 07 2016
From Peter Bala, Mar 23 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(4*n-k-1,n-k)*binomial(5*n,k)^2.
For n >= 1, a(n) = (7/5)*binomial(m*n,2*n)*binomial(m*n/2,2*n)* binomial(2*n,n)^2/binomial(m*n/2,n)^2 at m = -3. Se A352651 for the case m = 1.
a(n) = [x^n] (1 - x)^(2*n) * P(5*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A275652.
a(p) == a(1) (mod p^3) for primes p >= 5.
Conjecture: The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k. (End)
MAPLE
seq(simplify(factorial(3*n/2)*factorial(5*n)*factorial(7*n/2)/(factorial(n)^2*factorial(3*n)*factorial(5*n/2)^2)), n = 0 .. 20);
MATHEMATICA
Table[(5 n)!/((3 n)! n!^2) ((3 n/2)! (7 n/2)!)/(5 n/2)!^2, {n, 0, 13}] (* Michael De Vlieger, Aug 07 2016 *)
PROG
(PARI) a(n) = sum(k = 0, n, binomial(4*n-k-1, n-k)*binomial(5*n, k)^2); \\ Michel Marcus, Apr 21 2022
(Python)
from math import factorial
from sympy import factorial2
def A275654(n): return int(factorial(5*n)*factorial2(3*n)*factorial2(7*n)//factorial(3*n)//factorial(n)**2//factorial2(5*n)**2) # Chai Wah Wu, Aug 08 2023
CROSSREFS
Sequence in context: A100548 A103660 A317799 * A283519 A284770 A107444
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 04 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 18:30 EDT 2024. Contains 373107 sequences. (Running on oeis4.)