The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247225 a(n) = n if n <= 3, a(4)=5, otherwise the smallest number not occurring earlier having at least one common factor with a(n-3), but none with a(n-1)*a(n-2). 6
1, 2, 3, 5, 4, 9, 25, 8, 21, 55, 16, 7, 11, 6, 35, 121, 12, 49, 143, 10, 63, 13, 20, 27, 91, 22, 15, 119, 26, 33, 17, 14, 39, 85, 28, 57, 65, 32, 19, 45, 34, 133, 69, 40, 77, 23, 18, 175, 253, 24, 95, 161, 36, 125, 203, 38, 75, 29, 44, 51, 145, 46, 81, 155, 52 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Conjecturally the sequence is a permutation of the positive integers. However, to prove this we need more subtle arguments than were used to prove the corresponding property for A098550. - Vladimir Shevelev, Jan 14 2015
For n <= 2000, a(3n-1) is even and both a(3n) and a(3n-2) are odd numbers. I conjecture that this is true for all positive integers n. This conjecture is true iff for all positive integers n, a(3n-1) is even. - Farideh Firoozbakht, Jan 14 2015
From Vladimir Shevelev, Jan 19 2015: (Start)
A generalization of A098550 and A247225.
Let p_n=prime(n). Define the following sequence
a(1)=1, a(2)=p_1,...,a(k+2)=p_(k+1), otherwise the smallest number not occurring earlier having at least one common factor with a(n-(k+1)), but none with a(n-1)*a(n-2)*...*a(n-k).
The sequence begins
1, p_1, p_2, ..., p_(k+1), p_1^2, p_2^2, ..., p_(k+1)^2, p_1^3, ... (*)
[ p_1^3 is followed by p_2*p_(k+2), k<=2,
p_2^3, k>=3, etc.]
In particular, if k=1, it is A098550, if k=2, it is A247225.
Conjecturally for every k>=2, as in the case k=1, the sequence (*) is a permutation of the positive integers. For k>=3, at first glance, already the appearance of the number 6 seems problematic. However, at the author's request, Peter J. C. Moses found that the positions of 6 are 83, 157, 1190, 206, ... in cases k=3,4,5,6,... respectively (A254003).
Note also that for every k>=2, every even term is followed by k odd terms. This is explained by the minimal growth of even numbers (2n) relatively with one of the numbers with the smallest prime divisor p>=3 (asymptotically 6n, 15n, 105n/4, 385n/8, ... for p = 3,5,7,11,... respectively (cf. A084967 - A084970)).
(End)
LINKS
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015.
MATHEMATICA
a[n_ /; n <= 3] := n; a[4]=5; a[n_] := a[n] = For[aa = Table[a[j], {j, 1, n-1}]; k=4, True, k++, If[FreeQ[aa, k] && !CoprimeQ[k, a[n-3]] && CoprimeQ[k, a[n-1]*a[n-2]], Return[k]]]; Table[ a[n], {n, 1, 65}] (* Jean-François Alcover, Jan 12 2015 *)
CROSSREFS
Sequence in context: A069202 A359874 A244984 * A100932 A064360 A075158
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jan 11 2015
EXTENSIONS
More terms from Peter J. C. Moses, Jan 12 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)