The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189572 Fixed point of the morphism 0->01, 1->001. 5
0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1
COMMENTS
Is this a shifted version of A004641? - R. J. Mathar, May 16 2011
The answer is: yes. We have (a(n+1)) = A004641(n), for all n. Let S be the morphism 0->01, 1->001, and let T be the morphism 0->10, 1->100. By definition A004641 is the unique fixed point of T. The equality above is obviously implied by the following claim: for all n it holds that S^n(0)0 = 0T^n(0), and S^n(01)0 = 0T^n(10). Proof: S(0)0 = 010 = 0T(0), and S(01)0 = 010010 = 0T(10). Proceed by induction: S^(n+1)(0)0 = S^n(01)0 = 0T^n(10) = 0T^(n+1)(0) and S^(n+1)(01)0 = S^n(01)S^n(0)S^n(01)0 = 0T^n(10)T^n(0)T^n(10) = 0T^(n+1)(10). - Michel Dekking, Feb 07 2017
(a(n)) is the inhomogeneous Sturmian sequence with slope sqrt(2) - 1 and intercept 1 - sqrt(2)/2. Let psi be the morphism 0->01, 1->001. Then the parameters of the Sturmian sequence can be computed from psi = psi_1 psi_4, where psi_1 is the Fibonacci morphism, and psi_4 is the morphism 0->0, 1->10. See also Example 2 in Komatsu's paper, which considers the square 0->01001, 1->0101001 of psi. - Michel Dekking, Nov 03 2018
Proof of Kimberling's conjecture: one can use Lemma 1 in the Bosma, Dekking, Steiner paper, which gives the positions of 1 in a Sturmian sequence as a Beatty sequence. - Michel Dekking, Nov 03 2018
LINKS
Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A4.
Michel Dekking, Substitution invariant Sturmian words and binary trees, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A17.
Takao Komatsu, Substitution invariant inhomogeneous Beatty sequences, Tokyo J. Math. 22 (1999), 235-243.
FORMULA
a(n) = floor(alpha*n+beta) - floor(alpha*(n-1)+beta), with alpha = sqrt(2)-1, beta = 1-sqrt(2)/2 - Michel Dekking, Nov 03 2018
EXAMPLE
0->01->01001->010010101001->
MATHEMATICA
t = Nest[Flatten[# /. {0->{0, 1}, 1->{0, 0, 1}}] &, {0}, 6] (*A189572*)
f[n_] := t[[n]]
Flatten[Position[t, 0]] (*A189573*)
Flatten[Position[t, 1]] (* A080652 conjectured *)
CROSSREFS
See A188068 and the mirror image of A275855 for a similar pair of fixed points of morphisms. - Michel Dekking, Feb 07 2017
Sequence in context: A288600 A284468 A260455 * A287028 A327202 A357448
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 23 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 02:06 EDT 2024. Contains 373008 sequences. (Running on oeis4.)