The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184774 Primes of the form floor(k*sqrt(2)). 21
2, 5, 7, 11, 19, 29, 31, 41, 43, 53, 59, 67, 73, 79, 83, 89, 97, 101, 103, 107, 113, 127, 131, 137, 149, 151, 173, 179, 181, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 271, 277, 281, 311, 313, 337, 347, 349, 353, 359, 367, 373, 379, 383, 397 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Let N={1,2,...}, L={floor(n*sqrt(2)): n in N} and U={2n+L(n): n in N}. Every prime is in L or U, since the union of the (disjoint) sets L and U is N.
The conjecture formerly posted here, that "if r is an irrational number and 1<r<2, then there are infinitely many primes in the set L={floor(n*r)}," is proved in I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, (1954), page 180.
Note that every prime not in L is in U={floor(n*s}, where s=r/(r-1). That is, Beatty sequences partition the primes into two infinite classes.
The conjecture generalized: if r is a positive irrational number and h is a real number, then each of the sets {floor(n*r+h)}, {round(n*r+h)}, and {ceiling(n*r+h)} contains infinitely many primes. Can the method in Vinogradov be extended to cover these cases?
[Update regarding the conjecture from Clark Kimberling, Jan 03 2011.]
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ sqrt(2)*n log n. - Charles R Greathouse IV, Apr 29 2015
EXAMPLE
The sequence L(n)=floor(n*sqrt(2)) begins with 1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19,..., which includes primes L(2)=2, L(4)=5, L(5)=7,...
MATHEMATICA
r=2^(1/2); s=r/(r-1);
a[n_]:=Floor [n*r]; (* A001951 *)
b[n_]:=Floor [n*s]; (* A001952 *)
Table[a[n], {n, 1, 120}]
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]; t4
t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]; t5
t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 300}]; t6
(* the lists t1, t2, t3, t4, t5, t6 match the sequences
Select[Floor[Range[500]Sqrt[2]], PrimeQ] (* Harvey P. Dale, Jan 05 2019 *)
PROG
(PARI) is(n)=my(k=sqrtint(n^2\2)+1); sqrtint(2*k^2)==n && isprime(n) \\ Charles R Greathouse IV, Apr 29 2015
(Magma) [Floor(n*Sqrt(2)): n in [1..400] | IsPrime(Floor(n*Sqrt(2)))]; // Vincenzo Librandi, Apr 30 2015
(Python)
from math import isqrt
from itertools import count, islice
from sympy import isprime
def A184774_gen(): # generator of terms
return filter(isprime, (isqrt(k**2<<1) for k in count(1)))
A184774_list = list(islice(A184774_gen(), 25)) # Chai Wah Wu, Jul 28 2022
CROSSREFS
Cf. A001951 (Beatty sequence of sqrt(2)), A001952 (Beatty sequence of 2+sqrt(2)), A184775, A184776, A184777, A184778, A184779.
Sequence in context: A116635 A340759 A252280 * A038884 A338345 A252282
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 21 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 22:30 EDT 2024. Contains 372549 sequences. (Running on oeis4.)