login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181937 André numbers. Square array A(n,k), n>=2, k>=0, read by antidiagonals upwards, A(n,k) = n-alternating permutations of length k. 15
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 16, 1, 1, 1, 1, 1, 9, 61, 1, 1, 1, 1, 1, 4, 19, 272, 1, 1, 1, 1, 1, 1, 14, 99, 1385, 1, 1, 1, 1, 1, 1, 5, 34, 477, 7936, 1, 1, 1, 1, 1, 1, 1, 20, 69, 1513, 50521, 1, 1, 1, 1, 1, 1, 1, 6, 55, 496, 11259, 353792 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,10
COMMENTS
The André numbers were studied by Désiré André in the case n=2 around 1880. The present author suggests that the numbers A(n,k) be named in honor of André. Already in 1877 Ludwig Seidel gave an efficient algorithm for computing the coefficients of secant and tangent which immediately carries over to the general case. Anthony Mendes and Jeffrey Remmel give exponential generating functions for the general case.
REFERENCES
Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
LINKS
Désiré André, Développement de séc x et de tang x, C. R. Math. Acad. Sci. Paris 88 (1879), 965-967.
Désiré André, Sur les permutations alternées, J. Math. pur. appl., 7 (1881), 167-184.
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
EXAMPLE
n\k [0][1][2][3][4] [5] [6] [7] [8] [9] [10] [11]
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 [A000012]
[2] 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792 [A000111]
[3] 1, 1, 1, 1, 3, 9, 19, 99, 477, 1513, 11259, 74601 [A178963]
[4] 1, 1, 1, 1, 1, 4, 14, 34, 69, 496, 2896, 11056 [A178964]
[5] 1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300 [A181936]
[6] 1, 1, 1, 1, 1, 1, 1, 6, 27, 83, 209, 461 [A250283]
MAPLE
A181937_list := proc(n, len) local E, dim, i, k; # Seidel's boustrophedon transform
dim := len-1; E := array(0..dim, 0..dim); E[0, 0] := 1;
for i from 1 to dim do
if i mod n = 0 then E[i, 0] := 0 ;
for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
else E[0, i] := 0;
for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
fi od; [E[0, 0], seq(E[k, 0]+E[0, k], k=1..dim)] end:
for n from 2 to 6 do print(A181937_list(n, 12)) od;
MATHEMATICA
dim = 13; e[_][0, 0] = 1; e[m_][n_ /; 0 <= n <= dim, 0] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] == 0 := e[m][k, n] = e[m][k, n-1] + e[m][k+1, n-1]; e[m_][0, n_ /; 0 <= n <= dim] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] != 0 := e[m][k, n] = e[m][k-1, n] + e[m][k-1, n+1]; e[_][_, _] = 0; a[_, 0] = 1; a[m_, n_] := e[m][n, 0] + e[m][0, n]; Table[a[m-n+1, n], {m, 1, dim-1}, {n, 0, m-1}] // Flatten (* Jean-François Alcover, Jul 23 2013, after Maple *)
b[r_, u_, o_, t_] := b[r, u, o, t] = If[u + o == 0, 1, If[t == 0, Sum[b[r, u - j, o + j - 1, Mod[t + 1, r]], {j, 1, u}], Sum[b[r, u + j - 1, o - j, Mod[t + 1, r]], {j, 1, o}]]]; A[n_, k_] := b[n, k, 0, 0]; Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten (* Jean-François Alcover, Nov 22 2023, after Alois P. Heinz in A250283 *)
PROG
(Sage)
@cached_function
def A(m, n):
if n == 0: return 1
s = -1 if m.divides(n) else 1
t = [m*k for k in (0..(n-1)//m)]
return s*add(binomial(n, k)*A(m, k) for k in t)
A181937_row = lambda m, n: (-1)^int(is_odd(n//m))*A(m, n)
for n in (1..6): print([A181937_row(n, k) for k in (0..20)]) # Peter Luschny, Feb 06 2017
(Julia) # Signed version.
using Memoize
@memoize function André(m, n)
n ≤ 0 && return 1
r = range(0, stop=n-1, step=m)
S = sum(binomial(n, k) * André(m, k) for k in r)
n % m == 0 ? -S : S
end
for m in 1:8 println([André(m, n) for n in 0:11]) end # Peter Luschny, Feb 09 2019
CROSSREFS
Sequence in context: A212382 A274835 A275069 * A233836 A214719 A356299
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 03 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 27 15:06 EDT 2024. Contains 372019 sequences. (Running on oeis4.)