The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124029 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise. 4
1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The matrices are {4} if n=1, {{4,-1},{-1,4}} if n=2, {{4,-1,0},{-1,4,-1},{0,-1,4}} if n=3 etc. The empty matrix at n=0 has an empty product (determinant) with assigned value =1.
Riordan array (1/(1-4*x+x^2), -x/(1-4*x+x^2)). - Philippe Deléham, Mar 04 2016
LINKS
Joanne Dombrowski, Tridiagonal matrix representations of cyclic self-adjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334.
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (4-x)*p(n-1, x) - p(n-2, x), p(0, x) = 1, p(1, x) = 4-x.
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = [x^k]( ChebyshevU(n, (4-x)/2) ).
Sum_{k=0..n} T(n, k) = A001906(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A004254(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007070(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000302(n).
T(n, n) = (-1)^n.
T(n, n-1) = 4*A181983(n), n >= 1.
T(n, n-2) = (-1)^n*A139278(n-1), n >= 2.
T(n, 0) = A001353(n+1). (End)
EXAMPLE
Triangle begins as:
1;
4, -1;
15, -8, 1;
56, -46, 12, -1;
209, -232, 93, -16, 1;
780, -1091, 592, -156, 20, -1;
2911, -4912, 3366, -1200, 235, -24, 1;
10864, -21468, 17784, -8010, 2120, -330, 28, -1;
MAPLE
A123966x := proc(n, x)
local A, r, c ;
A := Matrix(1..n, 1..n) ;
for r from 1 to n do
for c from 1 to n do
A[r, c] :=0 ;
if r = c then
A[r, c] := A[r, c]+4 ;
elif abs(r-c)= 1 then
A[r, c] := A[r, c]-1 ;
end if;
end do:
end do:
(-1)^n*LinearAlgebra[CharacteristicPolynomial](A, x) ;
end proc;
A123966 := proc(n, k)
coeftayl( A123966x(n, x), x=0, k) ;
end proc:
seq(seq(A123966(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Dec 06 2011
MATHEMATICA
(* Matrix version*)
k = 4;
T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];
M[d_]:= Table[T[n, m, d], {n, d}, {m, d}];
Table[M[d], {d, 10}]
Table[Det[M[d]], {d, 10}]
Table[Det[M[d] - x*IdentityMatrix[d]], {d, 10}]
Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d, 10}]]//Flatten
(* Recursive Polynomial form*)
p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];
Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
(* Additional program *)
Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n, 0, 12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
PROG
(Magma)
m:=12;
R<x>:=PowerSeriesRing(Integers(), m+2);
A124029:= func< n, k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;
[A124029(n, k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
(SageMath)
def A124029(n, k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]
flatten([[A124029(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
CROSSREFS
Cf. A139278, A159764, A181983, A207823 (absolute values).
Sequence in context: A080419 A095307 A159764 * A207823 A056920 A123382
KEYWORD
tabl,sign
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 23:52 EDT 2024. Contains 373008 sequences. (Running on oeis4.)