login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119879 Exponential Riordan array (sech(x),x). 18
1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 5, 0, -6, 0, 1, 0, 25, 0, -10, 0, 1, -61, 0, 75, 0, -15, 0, 1, 0, -427, 0, 175, 0, -21, 0, 1, 1385, 0, -1708, 0, 350, 0, -28, 0, 1, 0, 12465, 0, -5124, 0, 630, 0, -36, 0, 1, -50521, 0, 62325, 0, -12810, 0, 1050, 0, -45, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Row sums have e.g.f. exp(x)*sech(x) (signed version of A009006). Inverse of masked Pascal triangle A119467. Transforms the sequence with e.g.f. g(x) to the sequence with e.g.f. g(x)*sech(x).
Coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent and Bernoulli number (triangle read by rows). Another version in A153641. - Philippe Deléham, Oct 26 2013
Relations to Green functions and raising/creation and lowering/annihilation/destruction operators are presented in Hodges and Sukumar and in Copeland's discussion of this sequence and 2020 pdf. - Tom Copeland, Jul 24 2020
LINKS
P. Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 28.
A. Hodges and C. V. Sukumar, Bernoulli, Euler, permutations and quantum algebras, Proc. R. Soc. A Oct. 2007 vol 463 no. 463 2086 2401-2414.
Miguel Méndez and Rafael Sánchez, On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops, arXiv:1707.00336 [math.CO}, 2017, Section 4.3, Example 4.
Miguel A. Méndez and Rafael Sánchez Lamoneda, Monops, Monoids and Operads: The Combinatorics of Sheffer Polynomials, The Electronic Journal of Combinatorics 25(3) (2018), #P3.25.
FORMULA
Number triangle whose k-th column has e.g.f. sech(x)*x^k/k!.
T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(1/2) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
The coefficients in ascending order of x^i of the polynomials p{0}(x) = 1 and p{n}(x) = Sum_{k=0..n-1; k even} binomial(n,k)*p{k}(0)*((n mod 2) - 1 + x^(n-k)). - Peter Luschny, Jul 16 2012
E.g.f.: exp(x*z)/cosh(x). - Peter Luschny, Aug 01 2012
Sum_{k=0..n} T(n,k)*x^k = A122045(n), A155585(n), A119880(n), A119881(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 27 2013
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of this entry, A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
Triangle equals P*((I + P^2)/2)^(-1), where P denotes Pascal's triangle A007318. - Peter Bala, Mar 07 2024
EXAMPLE
Triangle begins:
1;
0, 1;
-1, 0, 1;
0, -3, 0, 1;
5, 0, -6, 0, 1;
0, 25, 0, -10, 0, 1;
-61, 0, 75, 0, -15, 0, 1;
0, -427, 0, 175, 0, -21, 0, 1;
1385, 0, -1708, 0, 350, 0, -28, 0, 1;
MAPLE
T := (n, k) -> binomial(n, k)*2^(n-k)*euler(n-k, 1/2): # Peter Luschny, Jan 25 2009
MATHEMATICA
T[n_, k_] := Binomial[n, k] 2^(n-k) EulerE[n-k, 1/2];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, after Peter Luschny *)
PROG
(Sage)
@CachedFunction
def A119879_poly(n, x) :
return 1 if n == 0 else add(A119879_poly(k, 0)*binomial(n, k)*(x^(n-k)-1+n%2) for k in range(n)[::2])
def A119879_row(n) :
R = PolynomialRing(ZZ, 'x')
return R(A119879_poly(n, x)).coeffs() # Peter Luschny, Jul 16 2012
# Alternatively:
(Sage) # uses[riordan_array from A256893]
riordan_array(sech(x), x, 9, exp=true) # Peter Luschny, Apr 19 2015
(PARI)
{T(n, k) = binomial(n, k)*2^(n-k)*(2/(n-k+1))*(subst(bernpol(n-k+1, x), x, 1/2) - 2^(n-k+1)*subst(bernpol(n-k+1, x), x, 1/4))};
for(n=0, 5, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 25 2019
CROSSREFS
Row sums are A155585. - Johannes W. Meijer, Apr 20 2011
Rows reversed: A081658.
Sequence in context: A191532 A333852 A179552 * A115714 A346242 A020768
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, May 26 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 3 19:53 EDT 2024. Contains 372222 sequences. (Running on oeis4.)