login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119258 Triangle read by rows: T(n,0) = T(n,n) = 1 and for 0<k<n: T(n,k) = 2*T(n-1, k-1) + T(n-1,k). 21
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 17, 15, 1, 1, 9, 31, 49, 31, 1, 1, 11, 49, 111, 129, 63, 1, 1, 13, 71, 209, 351, 321, 127, 1, 1, 15, 97, 351, 769, 1023, 769, 255, 1, 1, 17, 127, 545, 1471, 2561, 2815, 1793, 511, 1, 1, 19, 161, 799, 2561, 5503, 7937, 7423, 4097, 1023, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
From Richard M. Green, Jul 26 2011: (Start)
T(n,n-k) is the (k-1)-st Betti number of the subcomplex of the n-dimensional half cube obtained by deleting the interiors of all half-cube shaped faces of dimension at least k.
T(n,n-k) is the (k-2)-nd Betti number of the complement of the k-equal real hyperplane arrangement in R^n.
T(n,n-k) gives a lower bound for the complexity of the problem of determining, given n real numbers, whether some k of them are equal.
T(n,n-k) is the number of nodes used by the Kronrod-Patterson-Smolyak cubature formula in numerical analysis. (End)
LINKS
A. Björner and V. Welker, The homology of "k-equal" manifolds and related partition lattices, Adv. Math., 110 (1995), 277-313.
Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
R. M. Green, Homology representations arising from the half cube, Adv. Math., 222 (2009), 216-239.
R. M. Green, Homology representations arising from the half cube, II, J. Combin. Theory Ser. A, 117 (2010), 1037-1048.
R. M. Green, Homology representations arising from the half cube, II, arXiv:0812.1208 [math.RT], 2008.
R. M. Green and Jacob T. Harper, Morse matchings on polytopes, arXiv preprint arXiv:1107.4993 [math.GT], 2011.
K. Petras, On the Smolyak cubature error for analytic functions, Adv. Comput. Math., 12 (2000), 71-93.
M. Shattuck and T. Waldhauser, Proofs of some binomial identities using the method of last squares, Fib. Q., 48 (2010), 290-297.
M. Shattuck and T. Waldhauser, Proofs of some binomial identities using the method of last squares, arXiv:1107.1063 [math.CO], 2010.
FORMULA
T(2*n,n-1) = T(2*n-1,n) for n > 0;
central terms give A119259; row sums give A007051;
T(n,0) = T(n,n) = 1;
T(n,1) = A005408(n-1) for n > 0;
T(n,2) = A056220(n-1) for n > 1;
T(n,n-4) = A027608(n-4) for n > 3;
T(n,n-3) = A055580(n-3) for n > 2;
T(n,n-2) = A000337(n-1) for n > 1;
T(n,n-1) = A000225(n) for n > 0.
T(n,k) = [k<=n]*(-1)^k*Sum_{i=0..k} (-1)^i*C(k-n,k-i)*C(n,i). - Paul Barry, Sep 28 2007
From Richard M. Green, Jul 26 2011: (Start)
T(n,k) = [k<=n] Sum_{i=n-k..n} (-1)^(n-k-i)*2^(n-i)*C(n,i).
T(n,k) = [k<=n] Sum_{i=n-k..n} C(n,i)*C(i-1,n-k-1).
G.f. for T(n,n-k): x^k/(((1-2x)^k)*(1-x)). (End)
T(n,k) = R(n,k,2) where R(n, k, m) = (1-m)^(-n+k)-m^(k+1)*Pochhammer(n-k,k+1)* hyper2F1([1,n+1], [k+2], m)/(k+1)!. - Peter Luschny, Jul 25 2014
From Peter Bala, Mar 05 2018: (Start)
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + 2*x)^n/(1 + x) about 0. For example, for n = 4 we have (1 + 2*x)^4/(1 + x) = 1 + 7*x + 17*x^2 + 15*x^3 + x^4 + O(x^5).
Row reverse of A112857. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 5, 7, 1;
1, 7, 17, 15, 1;
1, 9, 31, 49, 31, 1;
MAPLE
# Case m = 2 of the more general:
A119258 := (n, k, m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k, k+1) *hypergeom([1, n+1], [k+2], m)/(k+1)!;
seq(seq(round(evalf(A119258(n, k, 2))), k=0..n), n=0..10); # Peter Luschny, Jul 25 2014
MATHEMATICA
T[n_, k_] := Binomial[n, k] Hypergeometric2F1[-k, n-k, n-k+1, -1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 10 2017 *)
PROG
(Haskell)
a119258 n k = a119258_tabl !! n !! k
a119258_row n = a119258_tabl !! n
a119258_list = concat a119258_tabl
a119258_tabl = iterate (\row -> zipWith (+)
([0] ++ init row ++ [0]) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Nov 15 2011
(PARI) T(n, k) = if(k==0 || k==n, 1, 2*T(n-1, k-1) + T(n-1, k) ); \\ G. C. Greubel, Nov 18 2019
(Magma)
function T(n, k)
if k eq 0 or k eq n then return 1;
else return 2*T(n-1, k-1) + T(n-1, k);
end if;
return T;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
else: return 2*T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019
CROSSREFS
A145661, A119258 and A118801 are all essentially the same (see the Shattuck and Waldhauser paper). - Tamas Waldhauser, Jul 25 2011
Sequence in context: A216948 A183944 A145661 * A099608 A247285 A047969
KEYWORD
nonn,tabl,easy
AUTHOR
Reinhard Zumkeller, May 11 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 10 04:35 EDT 2024. Contains 372356 sequences. (Running on oeis4.)