The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112487 a(n) = Sum_{k=0..n} E2(n, k)*2^k, where E2(n, k) are the second-order Eulerian numbers A340556. 6
1, 2, 10, 82, 938, 13778, 247210, 5240338, 128149802, 3551246162, 109979486890, 3764281873042, 141104799067178, 5749087305575378, 252969604725106090, 11955367835505775378, 603967991604199335722, 32479636694930586142802, 1852497140997527094395050 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Previous name: Row sums of triangle A112486.
LINKS
Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From N. J. A. Sloane, Feb 06 2013
W. Steven Gray, Luis A. Duffaut Espinosa, and Kurusch Ebrahimi-Fard, Additive Networks of Chen-Fliess Series: Local Convergence and Relative Degree, arXiv:2104.08950 [eess.SY], 2021.
W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
M. Thitsa and W. S. Gray, On the Radius of Convergence of Interconnected Analytic Nonlinear Input-Output Systems, SIAM Journal on Control and Optimization, Vol. 50, No. 5, pp. 2786-2813. - From N. J. A. Sloane, Dec 26 2012
FORMULA
a(n) = Sum_{m=0..n} A112486(n, m), n >= 0.
a(n) = 2*A032188(n+1), n > 0. - Vladeta Jovovic, Jul 11 2007
From Paul D. Hanna, Jun 30 2009: (Start)
E.g.f. A(x) satisfies: A'(x) = A(x)^2 + A(x)^3.
E.g.f. A(x) satisfies: A(x) = exp( Integral[A(x) + A(x)^2]dx ) with A(0)=1. (End)
E.g.f. A(x) satisfies: A(x) = 2*exp(A(x)) - (2+x), where A(x) = Sum_{n>=0} a(n)*x^(n+1)/(n+1)! (the e.g.f. when offset=1). - Paul D. Hanna, Sep 23 2011
From Tom Copeland, Oct 05 2011: (Start)
With c(0)= 0 and c(n+1)= (-1)^n a(n) for n>=0, c(n)=(-1)^(n+1) PW(n,-2) with PW the Ward polynomials A134991. E.g.f. for the c(n) is A(x) = -(x+2)-LW{-2 exp[-(x+2)]}, where LW(x) is a suitable branch of the Lambert W Fct. (see A135338).
The compositional inverse is B(x) = x + 2(exp(x) - x - 1). These results are a special case of A134685 with u(x)=B(x), i.e., u_1=1 and (u_n)=2 for n>0.
Let h(x) = 1/(dB(x)/dx) = 1/[1+2(exp(x)-1)], then c(n) is given by (h(x)*d/dx)^n x, evaluated at x=0, i.e., A(x) = exp(x*h(u)*d/du) u, evaluated at u=0. Also, dA(x)/dx = h(A(x)).
The e.g.f. A(x) = -v * Sum_(j>=1) D(j-1,u) (-z)^j/ j! where u=-(x+2), v=1+u, z=(1+v)/(v^2) and D(j-1,u) are the polynomials of A042977. (End)
a(n) = (n-1)!*(Sum_{k=0..n-1} binomial(n+k-1, n-1)*Sum_{j=0..k} (-1)^(n+j-1)* binomial(k, j)*Sum_{l=0..j} binomial(j, l)*(j-l)!*2^(j-l)*(-1)^l*Stirling2(n-l+j-1, j-l))/(n-l+j-1)!)))), n>0. - Vladimir Kruchinin, Feb 14 2012
G.f.: 1/Q(0), where Q(k)= 1 + k*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) ~ n^n / (exp(n) * (1-log(2))^(n+1/2)). - Vaclav Kotesovec, Aug 14 2017
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 02 2020
MAPLE
A112487 := proc(n)
add(A112486(n, k), k=0..n) ;
end proc: # R. J. Mathar, Dec 19 2013
seq(op(k, convert(asympt(GAMMA(n, 2*n)*exp(2*n)/(2*n)^n, n, 20), polynom))*(-1)^(k+1)*n^k, k = 1..19); # Maple 2017, Vaclav Kotesovec, Aug 14 2017
E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1));
a := n -> add(E2(n, k)*2^k, k=0..n):
seq(a(n), n=0..17); # Peter Luschny, Feb 13 2021
MATHEMATICA
a[n_] := (n-1)!*(Sum[ Binomial[n+k-1, n-1]* Sum[(-1)^(n+j-1)*Binomial[k, j]* Sum[(Binomial[j, l]*(j-l)!*2^(j-l)*(-1)^l*StirlingS2[n-l+j-1, j-l])/(n-l+j-1)!, {l, 0, j}], {j, 0, k}], {k, 0, n-1}]); Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; a[n_] := Sum[T[n, k] 2^k, {k, 0, n}];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Feb 13 2021 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(A+A^2)+x*O(x^n))); n!*polcoeff(A, n)} \\ Paul D. Hanna, Jun 30 2009
(Maxima) a(n):=(n-1)!*(sum(binomial(n+k-1, n-1)*sum((-1)^(n+j-1)*binomial(k, j)*sum((binomial(j, l)*(j-l)!*2^(j-l)*(-1)^l*stirling2(n-l+j-1, j-l))/(n-l+j-1)!, l, 0, j), j, 0, k), k, 0, n-1)); /* Vladimir Kruchinin, Feb 14 2012 */
CROSSREFS
Sequence in context: A218294 A286797 A321089 * A089469 A281547 A111265
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
EXTENSIONS
New name from Peter Luschny, Feb 13 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 20:02 EDT 2024. Contains 372533 sequences. (Running on oeis4.)