The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105751 Imaginary part of Product_{k=0..n} (1 + k*i), i = sqrt(-1). 10
0, 1, 3, 0, -40, -90, 1050, 6160, -46800, -549900, 3103100, 67610400, -271627200, -11186357000, 26495469000, 2416003824000, -1394099824000, -662595375078000, -936096296850000, 225382826562400000, 819329864480400000, -93217812901913700000, -570263312237604700000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
From Peter Bala, Jun 01 2023: (Start)
Compare with A105750(n) = the real part of Product_{k = 0..n} (1 + k*sqrt(-1)). Moll (2012) studied the prime divisors of the terms of A105750 and divided the primes into three classes. Numerical calculation suggests that a similar division holds in this case.
Type 1: primes p that do not divide any element of the sequence {a(n)}.
In this case, unlike in A105750, the set of type 1 primes is empty; that is, every prime p divides some term of this sequence.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of primes p == 1 (mod 4), equivalently, rational primes that split in the field extension Q(sqrt(-1)) of Q, together with the prime p = 2, which ramifies in Q(sqrt(-1)). See A002144.
Moll's conjecture 5.5 extends to this sequence and takes the form:
(i) the 2-adic valuation v_2(a(n)) ~ n/4 as n -> oo.
(ii) for the other primes of type 2, the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes consists of primes p == 3 (mod 4), equivalently, rational primes that remain inert in the field extension Q(sqrt(-1)) of Q. See A002145. (End)
LINKS
FORMULA
a(n) = ((2*n-1)*a(n-1)-(n^2-2*n+2)*n*a(n-2))/(n-1) for n > 1, a(n) = n for n < 2. - Alois P. Heinz, Apr 11 2018
From Peter Bala, May 27 2023:(Start)
a(n) = Sum_{k = 0..floor((n+1)/2)} (-1)^k*|Stirling1(n+1, n-2*k)|, where Stirling1(n, k) = A048994(n,k).
The triangular number n*(n+1)/2 divides a(n). See A164652. In particular, if p is an odd prime then p divides a(p).
a(2*n) = (-1)^(n+1)*A003703(2*n+1) for n >= 0.
a(2*n+1) = (-1)^(n+1)*A009454(2*n+2) for n >= 0. (End)
EXAMPLE
From Peter Bala, Jun 01 2023: (Start)
The sequence of 5-adic valuations [v_5(a(n)) : n = 4..100] = [1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 12, 11, 11, 13, 11, 12, 13, 13, 12, 12, 14, 13, 13, 14, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 20, 19, 19, 20, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 24, 25, 25, 24, 24, 25, 25, 25].
Note that v_5(a(100)) = 25 = 100/(5 - 1), in agreement with the asymptotic behavior conjectured above.
The sequence of 3-adic valuations [v_3(a(n)) : n >= 4] begins [0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, 1, 0, 3, 3, 0, 1, 3, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, ...], exhibiting the oscillatory behavior for type 3 primes conjectured above. (End)
MAPLE
a:= proc(n) option remember; `if`(n<2, n,
((2*n-1)*a(n-1)-(n^2-2*n+2)*n*a(n-2))/(n-1))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 11 2018
MATHEMATICA
Table[Im[Product[1+k*I, {k, 0, n}]], {n, 0, 22}] (* James C. McMahon, Jan 27 2024 *)
PROG
(PARI) a(n) = imag(prod(k=0, n, 1+k*I)); \\ Michel Marcus, Apr 11 2018
(Python)
from sympy.functions.combinatorial.numbers import stirling
def A105751(n): return sum(stirling(n+1, n-(k<<1), kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)) # Chai Wah Wu, Feb 22 2024
CROSSREFS
Sequence in context: A157310 A172396 A164806 * A177698 A009786 A012738
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 18 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 12:16 EDT 2024. Contains 373040 sequences. (Running on oeis4.)