login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091965 Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and three types of steps H=(1,0) (left factors of 3-Motzkin steps). 33
1, 3, 1, 10, 6, 1, 36, 29, 9, 1, 137, 132, 57, 12, 1, 543, 590, 315, 94, 15, 1, 2219, 2628, 1629, 612, 140, 18, 1, 9285, 11732, 8127, 3605, 1050, 195, 21, 1, 39587, 52608, 39718, 19992, 6950, 1656, 259, 24, 1, 171369, 237129, 191754, 106644, 42498, 12177, 2457 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
T(n,0) = A002212(n+1), T(n,1) = A045445(n+1); row sums give A026378.
The inverse is A207815. - Gary W. Adamson, Dec 17 2006 [corrected by Philippe Deléham, Feb 22 2012]
Reversal of A084536. - Philippe Deléham, Mar 23 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
5^n = (n-th row terms) dot (first n+1 terms in (1,2,3,...)). Example for row 4: 5^4 = 625 = (137, 132, 57, 12, 1) dot (1, 2, 3, 4, 5) = (137 + 264 + 171 + 48 + 5) = 625. - Gary W. Adamson, Jun 15 2011
Riordan array ((1-3*x-sqrt(1-6*x+5*x^2))/(2*x^2), (1-3*x-sqrt(1-6*x+5*x^2))/(2*x)). - Philippe Deléham, Feb 19 2012
REFERENCES
A. Nkwanta, Lattice paths and RNA secondary structures, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
Shu-Chiuan Chang and Robert Shrock, Structure of the Partition Function and Transfer Matrices for the Potts Model in a Magnetic Field on Lattice Strips, J. Stat. Physics 137 (2009) 667, table 5.
Helmut Prodinger, The amplitude of Motzkin paths, arXiv:2104.07596 [math.CO], 2021. Mentions this sequence.
Helmut Prodinger, Multi-edge trees and 3-coloured Motzkin paths: bijective issues, arXiv:2105.03350 [math.CO], 2021.
FORMULA
G.f.: G = 2/(1 - 3*z - 2*t*z + sqrt(1-6*z+5*z^2)). Alternatively, G = M/(1 - t*z*M), where M = 1 + 3*z*M + z^2*M^2.
Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0) = A002212(m+n+1). - Philippe Deléham, Sep 14 2005
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [3,3,3,...] in the main diagonal. - Gary W. Adamson, Dec 17 2006
Sum_{k=0..n} T(n,k)*(k+1) = 5^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A117641(n), A033321(n), A007317(n), A002212(n+1), A026378(n+1) for x = -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Nov 28 2009
T(n,k) = (k+1)*Sum_{m=k..n} binomial(2*(m+1),m-k)*binomial(n,m)/(m+1). - Vladimir Kruchinin, Oct 08 2011
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022
EXAMPLE
Triangle begins:
1;
3, 1;
10, 6, 1;
36, 29, 9, 1;
137, 132, 57, 12, 1;
543, 590, 315, 94, 15, 1;
2219, 2628, 1629, 612, 140, 18, 1;
T(3,1)=29 because we have UDU, UUD, 9 HHU paths, 9 HUH paths and 9 UHH paths.
Production matrix begins
3, 1;
1, 3, 1;
0, 1, 3, 1;
0, 0, 1, 3, 1;
0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
- Philippe Deléham, Nov 07 2011
MATHEMATICA
nmax = 9; t[n_, k_] := ((k+1)*n!*Hypergeometric2F1[k+3/2, k-n, 2k+3, -4]) / ((k+1)!*(n-k)!); Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 3, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
PROG
(Maxima)
T(n, k):=(k+1)*sum((binomial(2*(m+1), m-k)*binomial(n, m))/(m+1), m, k, n); / Vladimir Kruchinin, Oct 08 2011 */
(Sage)
@CachedFunction
def A091965(n, k):
if n==0 and k==0: return 1
if k<0 or k>n: return 0
if k==0: return 3*A091965(n-1, 0)+A091965(n-1, 1)
return A091965(n-1, k-1)+3*A091965(n-1, k)+A091965(n-1, k+1)
for n in (0..7):
[A091965(n, k) for k in (0..n)] # Peter Luschny, Nov 05 2012
CROSSREFS
Cf. A123965.
Sequence in context: A134283 A035324 A171814 * A171568 A107056 A365962
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Mar 13 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 27 04:12 EDT 2024. Contains 372009 sequences. (Running on oeis4.)