The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091406 Reversion of series for j-function. 6
1, 744, 750420, 872769632, 1102652742882, 1470561136292880, 2037518752496883080, 2904264865530359889600, 4231393254051181981976079, 6273346050902229242859370584, 9433668720359866477436486024652 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
From Peter Bala, Dec 17 2013: (Start)
Given a formal Laurent series L(z) = 1/z + a + b*z + c*z^2 + ..., there exists a formal series L^<-1>(z) = 1/z + A/z^2 + B/z^3 + ... such that L(L^<-1>(z)) = L^<-1>(L(z)) = z. The series L^<-1>(z) is called the reversion of the series L(z).
To find L^<-1>(z), first find the series reversion of the reciprocal series 1/L(z) = z - a*z^2 + z^3*(a^2 - b) - ... with respect to z, and then replace the variable z with the variable 1/z. This is the approach used in the Maple program below. (End)
Invert j = 1/q + 744 + 196884*q + 21493760*q^2 + ... to get q = 1/j + 744/j^2 + 750420/j^3 + ....
REFERENCES
J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, see p. 482.
LINKS
Y Abdelaziz, JM Maillard, Modular forms, Schwarzian conditions, and symmetries of differential equations in physics, arXiv preprint arXiv:1611.08493, 2016
Y.-H. He and V. Jejjala, Modular Matrix Models, arXiv:hep-th/0307293, 2003.
FORMULA
a(n) ~ c * 1728^n / n^(3/2), where c = 2 * Gamma(3/4)^4 / (exp(2*Pi) * sqrt(3) * Pi^(3/2)) = 0.000873226754634291459391356302898297243945046378336447143... - Vaclav Kotesovec, Jun 28 2017, updated Mar 07 2018
EXAMPLE
G.f. = x + 744*x^2 + 750420*x^3 + 872769632*x^4 + 1102652742882*x^5 + ... - Michael Somos, Dec 17 2021
MAPLE
with(numtheory):
Order := 12:
g2 := 4/3*(1 + 240*add(sigma[3](n)*q^n, n = 1..Order)):
g3 := 8/27*(1 - 504*add(sigma[5](n)*q^n, n = 1..Order)):
delta := series(g2^3 - 27*g3^2, q, Order):
#define the reciprocal of Klein's j_invariant
j_reciprocal := series(delta/(1728*g2^3), q, Order):
#find series reversion of j_reciprocal
j_inv := solve(series(j_reciprocal, q) = y, q):
seq(coeff(j_inv, y, n), n = 1..11); # Peter Bala, Dec 17 2013
MATHEMATICA
max = 9; s1 = 1728*Series[ KleinInvariantJ[t], {t, 0, 2*max} ] /. t -> -2*I*(Pi/Log[q]); s2 = Normal[InverseSeries[ Series[ s1, {q, 0, max} ], j]] /. j -> 1/x; Rest[ CoefficientList[ s2, x ] ] (* Jean-François Alcover, Feb 16 2012, fixed by Vaclav Kotesovec, Jun 28 2017 *)
a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ 1/(1728 KleinInvariantJ[ Log[q]/(2 Pi I)]), {q, 0, n}]], {q, 0, n}]]; Table[a[n], {n, 12}] (* Michael Somos, Dec 17 2021 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, A = O(x^n); A = x * (eta(x^2 + A) / eta(x + A))^24; polcoeff( serreverse( A / (1 + 256*A)^3), n))} /* Michael Somos, Jul 13 2004 */
CROSSREFS
Cf. A000521, A178451. See A066396 for another version.
Sequence in context: A066395 A161557 A294182 * A066396 A099819 A344014
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 03 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 19:36 EDT 2024. Contains 372666 sequences. (Running on oeis4.)