The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081578 Pascal-(1,3,1) array. 14
1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016813, A081585, A081586. Coefficients of the row polynomials in the Newton basis are given by A013611.
As a number triangle, this is the Riordan array (1/(1-x), x*(1+3*x)/(1-x)). It has row sums A015518(n+1) and diagonal sums A103143. - Paul Barry, Jan 24 2005
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
FORMULA
Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 3*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+3*x)^k/(1-x)^(k+1).
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*3^(j-k). - Paul Barry, Oct 23 2006
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(4*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 8*x + 16*x^2/2) = 1 + 9*x + 33*x^2/2! + 73*x^3/3! + 129*x^4/4! + 201*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 3.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 3.
Sum_{k=0..n} T(n, k, 3) = A015518(n+1). (End)
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 5, 9, 13, 17, ... A016813;
1, 9, 33, 73, 129, ... A081585;
1, 13, 73, 245, 593, ... A081586;
1, 17, 129, 593, 1921, ...
As a triangle this begins:
1;
1, 1;
1, 5, 1;
1, 9, 9, 1;
1, 13, 33, 13, 1;
1, 17, 73, 73, 17, 1;
1, 21, 129, 245, 129, 21, 1;
1, 25, 201, 593, 593, 201, 25, 1;
1, 29, 289, 1181, 1921, 1181, 289, 29, 1;
1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1;
1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - Philippe Deléham, Mar 15 2014
MATHEMATICA
Table[Hypergeometric2F1[-k, k-n, 1, 4], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
PROG
(Haskell)
a081578 n k = a081578_tabl !! n !! k
a081578_row n = a081578_tabl !! n
a081578_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
(Magma)
A081578:= func< n, k, q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081578(n, k, 3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
(Sage) flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
CROSSREFS
Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).
Sequence in context: A296128 A131061 A157169 * A184883 A279003 A210651
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 23 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 11:38 EDT 2024. Contains 373173 sequences. (Running on oeis4.)