The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074051 For each n there are uniquely determined numbers a(n) and b(n) and a polynomial p_n(x) such that for all integers m we have Sum_{i=1..m}i^n(i+1)! = a(n)*Sum_{i=1..m} (i+1)! + p_n(m)*(m+2)! + b(n). The sequence b(n) is A074052. 11
1, -1, 0, 3, -7, 0, 59, -217, 146, 2593, -15551, 32802, 160709, -1856621, 7971872, 1299951, -287113779, 2262481448, -7275903849, -36989148757, 698330745002, -4867040141851, 10231044332629, 184216198044034, -2679722886596295, 17971204188130391, -17976259717948832 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
If a(n)=0 then Sum_{i>=1}i^n(i+1)! = b(n) in the p-adic numbers. The only known numbers n with a(n)=0 are 2 and 5.
a(n)*(-1)^n gives the alternating row sums of the Sheffer triangle A143494 (2-restricted Stirling2). - Wolfdieter Lang, Oct 06 2011
LINKS
FORMULA
From Vladeta Jovovic, Jan 27 2005: (Start)
Second inverse binomial transform of A000587.
E.g.f.: exp(1 - 2*x - exp(-x)).
G.f.: Sum_{k >= 0}((x/(1+2*x))^k/Product_{l=0..k}(1 + l*x/(1+2*x)))/(1+2*x).
a(n) = Sum_{k=0..n} (-1)^(n-k)*(k^2-3*k+1)*Stirling2(n, k). (End)
a(n) = (-1)^n*(A000587(n+2)-A000587(n+1)). - Peter Luschny, Apr 17 2011
From Sergei N. Gladkovskii, Sep 28 2012 to Apr 22 2013: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k)= x*k + 1 + x + x^2*(k+1)/U(k+1).
G.f.: -1/U(0) where U(k)= -x*k - 1 - x + x^2*(k+1)/U(k+1).
G.f.: 1/(U(0) - x) where U(k)= 1 + x + x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/(U(0) + x) where U(k)= 1 + x*(2*k+1) - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1/G(0) where G(k)= 1 + 2*x/(1 + 1/(1 + 2*x*(k+1)/G(k+1))).
G.f.: 1 - 2*x/(G(0) + 2*x) where G(k)= 1 + 1/(1 + 2*x*(k+1)/(1 + 2*x/G(k+1))).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+k*x+2*x)/(1-x/(x-1/G(k+1))).
G.f.: (G(0)-2-2*x)/x^2 where G(k) = 1 + 1/(1+k*x)/(1-x/(x+1/G(k+1) )).
G.f.: (S-2-2*x)/x^2 where S = sum(k>=0, (2 + x*k)*x^k/prod(i=0..k, (1+x*i))).
G.f.: (G(0)-2)/x where G(k) = 1 + 1/(1+k*x+x)/(1-x/(x+1/G(k+1))).
G.f.: (1+x)/x/Q(0) - 1/x, where Q(k)= 1 + x - x/(1 + x*(k+1)/Q(k+1)). (End)
a(n) = exp(1) * (-1)^n * Sum_{k>=0} (-1)^k * (k+2)^n / k!. - Ilya Gutkovskiy, Sep 02 2021
EXAMPLE
a(2)=0 because Sum_{i=1..m}i^2(i+1)! = (m-1)(m+2)!+2.
a(3)=3 because Sum_{i=1..m}i^3(i+1)! = 3*Sum_{i=1..m}(i+1)!+(m^2-m-1)(m+2)!+2.
MAPLE
alias(S2 = combinat[stirling2]);
A074051 := proc(n) local k;
1 + add((-1)^(n+k) * (S2(n+1, k+1) - S2(n+2, k+1)), k = 0..n) end:
seq(A074051(i), i = 0..26); # Peter Luschny, Apr 17 2011
MATHEMATICA
A[a_] := Module[{p, k}, p[n_] = 0; For[k = a - 1, k >= 0, k--, p[n_] = Expand[p[n] + n^k Coefficient[n^a - (n + 2)p[n] + p[n - 1], n^(k + 1)]] ]; Expand[n^a - (n + 2)p[n] + p[n - 1]] ]
(* Second program: *)
a[n_] := (-1)^n (BellB[n+2, -1] - BellB[n+1, -1]);
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
PROG
(Python)
from itertools import accumulate
def A074051_list(size):
if size < 1: return []
L, accu = [], [1]
for n in range(size-1):
accu = list(accumulate([-accu[-1]] + accu))
L.append(-(-1)**n*accu[-2])
return L
print(A074051_list(28)) # Peter Luschny, Apr 25 2016
CROSSREFS
Sequence in context: A354797 A247956 A295043 * A335918 A048292 A072450
KEYWORD
easy,sign
AUTHOR
Jan Fricke, Aug 14 2002
EXTENSIONS
More terms from Vladeta Jovovic, Jan 27 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 20:56 EDT 2024. Contains 372522 sequences. (Running on oeis4.)