The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052918 a(0) = 1, a(1) = 5, a(n+1) = 5*a(n) + a(n-1). 46
1, 5, 26, 135, 701, 3640, 18901, 98145, 509626, 2646275, 13741001, 71351280, 370497401, 1923838285, 9989688826, 51872282415, 269351100901, 1398627786920, 7262490035501, 37711077964425, 195817879857626 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A087130(n)^2 - 29*a(n-1)^2 = 4*(-1)^n, n >= 1. - Gary W. Adamson, Jul 01 2003, corrected Oct 07 2008, corrected by Jianing Song, Feb 01 2019
a(p) == 29^((p-1)/2)) (mod p), for odd primes p. - Gary W. Adamson, Feb 22 2009
For more information about this type of recurrence, follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
Binomial transform of A015523. - Johannes W. Meijer, Aug 01 2010
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 5's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,5} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 5-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 5 kinds of squares available. (End)
LINKS
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 8.
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8, section 3.
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Tanya Khovanova, Recursive Sequences
FORMULA
G.f.: 1/(1 - 5*x - x^2).
a(3n) = A041047(5n), a(3n+1) = A041047(5n+3), a(3n+2) = 2*A041047(5n+4). - Henry Bottomley, May 10 2000
a(n) = Sum_{alpha=RootOf(-1+5*z+z^2)} (1/29)*(5+2*alpha)*alpha^(-1-n).
a(n-1) = (((5 + sqrt(29))/2)^n - ((5 - sqrt(29))/2)^n)/sqrt(29). - Gary W. Adamson, Jul 01 2003
a(n) = U(n, 5*i/2)*(-i)^n with i^2 = -1 and Chebyshev's U(n, x/2) = S(n, x) polynomials. See triangle A049310.
Let M = {{0, 1}, {1, 5}}, then a(n) is the lower-right term of M^n. - Roger L. Bagula, May 29 2005
a(n) = F(n, 5), the n-th Fibonacci polynomial evaluated at x = 5. - T. D. Noe, Jan 19 2006
a(n) = denominator of n-th convergent to [1, 4, 5, 5, 5, ...], for n > 0. Continued fraction [1, 4, 5, 5, 5, ...] = 0.807417596..., the inradius of a right triangle with legs 2 and 5. n-th convergent = A100237(n)/A052918(n), the first few being: 1/1, 4/5, 21/26, 109/135, 566/701, ... - Gary W. Adamson, Dec 21 2007
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 5*A097781(n), a(2n) = A097835(n).
Limit_{k->infinity} a(n+k)/a(k) = (A087130(n) + a(n-1)*sqrt(29))/2.
Limit_{n->infinity} A087130(n)/a(n-1) = sqrt(29).
(End)
From L. Edson Jeffery, Jan 07 2012: (Start)
Define the 2 X 2 matrix A = {{1, 1}, {5, 4}}. Then:
a(n) is the upper-left term of (1/5)*(A^(n+2) - A^(n+1));
a(n) is the upper-right term of A^(n+1);
a(n) is the lower-left term of (1/5)*A^(n+1);
a(n) is the lower-right term of (Sum_{k=0..n} A^k). (End)
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = (sqrt(29) - 5)/2. - Vladimir Shevelev, Feb 23 2013
MAPLE
spec := [S, {S=Sequence(Union(Z, Z, Z, Z, Z, Prod(Z, Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..30);
a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..30); # Zerinvary Lajos, Jul 26 2006
with(combinat):a:=n->fibonacci(n, 5):seq(a(n), n=1..30); # Zerinvary Lajos, Dec 07 2008
MATHEMATICA
LinearRecurrence[{5, 1}, {1, 5}, 30] (* Vincenzo Librandi, Feb 23 2013 *)
Table[Fibonacci[n+1, 5], {n, 0, 30}] (* Vladimir Reshetnikov, May 08 2016 *)
PROG
(Sage) [lucas_number1(n, 5, -1) for n in range(1, 22)] # Zerinvary Lajos, Apr 24 2009
(PARI) Vec(1/(1-5*x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
(Magma) I:=[1, 5]; [n le 2 select I[n] else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 23 2013
(Magma) R<x>:=PowerSeriesRing(Integers(), 22); Coefficients(R!( 1/(1 - 5*x - x^2) )); // Marius A. Burtea, Oct 16 2019
(GAP) a:=[1, 5];; for n in [3..30] do a[n]:=5*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
CROSSREFS
Row 5 of A073133, A172236, and A352361.
Cf. A087130, A099365 (squares), A100237, A175184 (Pisano periods), A201005 (prime subsequence).
Sequence in context: A047768 A022032 A255118 * A255633 A255815 A018903
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 07:35 EDT 2024. Contains 372530 sequences. (Running on oeis4.)