The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036284 Periodic vertical binary vectors of Fibonacci numbers. 19
6, 24, 1440, 5728448, 92568198012160, 26494530374406845814111659520, 2095920895719545919920115988669687683503034097906010941440, 13128614603426246034591796912897206548807135027496968025827278400248602613784037111736380004928525614173642247188480 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The sequence can be also computed with a recurrence that does not explicitly refer to Fibonacci numbers. See the given Maple and C programs.
Conjecture: For n>=1, each term a(n), when considered as a GF(2)[X]-polynomial, is divisible by GF(2)[X] -polynomial (x^3 + 1) ^ A000225(n-1). If this holds, then for n>=1, a(n) = A048720bi(A136380(n),A048723bi(9,A000225(n-1))). Conjecture 2: there is also one extra (x^1 + 1) factor present, see A136384.
LINKS
FORMULA
a(n) = Sum_{k=0..A007283(n)-1} ([A000045(k)/(2^n)] mod 2) * 2^k, where [] stands for floor function, i.e. Sum (bit n of Fibonacci(k))*(2^k), k = 0 ... (3*(2^n))-1.
EXAMPLE
When Fibonacci numbers are written in binary (see A004685), under each other as:
0000000 (0)
0000001 (1)
0000001 (1)
0000010 (2)
0000011 (3)
0000101 (5)
0001000 (8)
0001101 (13)
0010101 (21)
0100010 (34)
0110111 (55)
1011001 (89)
it can be seen that the bits in the n-th column from right repeat after a period of A007283(n): 3, 6, 12, 24, ... (See also A001175). This sequence is formed from those bits: 011, reversed is 110, is binary for 6, thus a(0) = 6. 000110, reversed is 11000, is binary for 24, thus a(1) = 24, 000001011010, reversed is 10110100000, is binary for 1440, thus a(2) = 1440.
MAPLE
A036284:=proc(n) option remember; local a, b, c, i, j, k, l, s, x, y, z; if (0 = n) then (6) else a := 0; b := 0; s := 0; x := 0; y := 0; k := 3*(2^(n-1)); l := 3*(2^n); j := 0; for i from 0 to l do z := bit_i(A036284(n-1), (j)); c := (a + b + (`if`((x = y), x, (z+1))) mod 2); if(c <> 0) then s := s + (2^i); fi; a := b; b := c; x := y; y := z; j := j + 1; if(j = k) then j := 0; fi; od; RETURN(s); fi; end:
bit_i := (x, i) -> `mod`(floor(x/(2^i)), 2);
MATHEMATICA
a[n_] := Sum[Mod[Fibonacci[k]/2^n // Floor, 2]* 2^k, {k, 0, 3*2^n - 1}]; Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Mar 04 2016 *)
CROSSREFS
Same sequence in octal base: A036285. Bits reversed: A036286. See also A136378, A136379, A136380, A136382, A136384, A037096, A037093, A000045.
Sequence in context: A052524 A267032 A234635 * A139235 A184388 A136606
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Nov 01 1998. Entry revised Dec 29 2007.
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 05:54 EDT 2024. Contains 372980 sequences. (Running on oeis4.)