login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0). 11
1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Previous name was: Triangle of numbers related to triangle A049224; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-5; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008543(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Peter Luschny, The Bell transform
FORMULA
T(n, m) = n!*A049224(n, m)/(m!*6^(n-m));
T(n+1, m) = (6*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, n<m, and T(n, 0) = 0, T(1, 1) = 1.
E.g.f. of m-th column: ((1 - (1-6*x)^(1/6))^m)/m!.
Sum_{k=1..n} T(n, k) = A028844(n).
EXAMPLE
Triangle begins as:
1;
5, 1;
55, 15, 1;
935, 295, 30, 1;
21505, 7425, 925, 50, 1;
623645, 229405, 32400, 2225, 75, 1;
21827575, 8423415, 1298605, 103600, 4550, 105, 1;
894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;
MATHEMATICA
(* First program *)
rows = 10;
b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];
A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs;
A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1, k] +T[n-1, k-1]]];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
PROG
(Sage) # uses[inverse_bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
(Magma)
function T(n, k) // T = A013988
if k eq 0 then return 0;
elif k eq n then return 1;
else return (6*(n-1)-k)*T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
CROSSREFS
Cf. A028844 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), A011801 (m=5), this sequence (m=6).
Sequence in context: A144341 A144342 A144268 * A340472 A342318 A246006
KEYWORD
easy,nonn,tabl
AUTHOR
EXTENSIONS
New name from Peter Luschny, Jan 16 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 29 14:42 EDT 2024. Contains 372114 sequences. (Running on oeis4.)