login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002655 Expansion of Product_{i >= 1} (1-q^i)(1-q^{7i}). 3
1, -1, -1, 0, 0, 1, 0, 0, 1, 1, 0, 0, -2, 0, -2, 0, 1, 0, 0, 0, 0, -1, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, -2, -1, 0, 0, -1, 0, 2, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 2, 0, 1, 2, -1, 0, 0, 0, 0, 0, -2, -1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

Number 56 of the 74 eta-quotients listed in Table I of Martin 1996.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers

FORMULA

Expansion of q^(-1/3) * eta(q) * eta(q^7) in powers of q.

Euler transform of period 7 sequence [ -1, -1, -1, -1, -1, -1, -2, ...]. - Michael Somos, Dec 06 2004

Given g.f. A(x), B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w + 2 * u*w^2 - v^3 - Michael Somos, Dec 06 2004

G.f.: Product_{k>0} (1 - x^k) * (1 - x^(7*k)).

a(n) = b(3*n + 1) where b(n) is multiplicative and b(p^(2*e)) = (-1)^e if p=2, b(p^e) = 0^e if p = 3, b(p^e) = (-1)^e if p = 7, b(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7), else p == 1, 2, 4 (mod 7) and p = y^2 + 7*x^2 when b(p^(2*e)) = (-1)^e if x*y not divisible by 3, b(p^e) = e+1 if x divisible by 3 or (e+1) * (-1)^e if y divisible by 3 . - Michael Somos, May 28 2005

a(2*n) = A160806(n). a(4*n + 3) = 0. a(4*n + 1) = -a(n). a(7*n + 3) = a(7*n + 4) = a(7*n + 6) = 0.

G.f. is a period 1 Fourier series which satisfies f(-1 / (63 t)) =  63^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, May 17 2015

EXAMPLE

G.f. = 1 - x - x^2 + x^5 + x^8 + x^9 - 2*x^12 - 2*x^14 + x^16 - x^21 + 2*x^22 + ...

G.f. = q - q^4 - q^7 + q^16 + q^25 + q^28 - 2*q^37 - 2*q^43 + q^49 - q^64 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^7], {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, n = 3*n + 1; (qfrep( [2, 1; 1, 32], n, 1) - qfrep( [8, 1; 1, 8], n, 1))[n])}; /* Michael Somos, May 28 2005 */

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^7 + A), n))}; /* Michael Somos, May 28 2005 */

(PARI) {a(n) = my(A, p, e, x, y); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, real(I^e), p==3, 0^e, p==7, (-1)^e, kronecker( p, 7)==-1, !(e%2), for( x=0, sqrtint(p\7), if( issquare(p - 7*x^2, &y), y = if( x%3 && y%3, real(I^e), (e+1) * if( x%3, (-1)^e, 1)); break)); y)))}; /* Michael Somos, May 28 2005 */

(MAGMA) Basis( CuspForms( Gamma1(63), 1), 242) [1]; /* Michael Somos, May 17 2015 */

CROSSREFS

Cf. A160806.

Sequence in context: A242848 A071957 A283978 * A064891 A278500 A035211

Adjacent sequences:  A002652 A002653 A002654 * A002656 A002657 A002658

KEYWORD

sign

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 15 18:26 EST 2017. Contains 296047 sequences.