login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002656 Expansion of (eta(q) * eta(q^7))^3 in powers of q. 4
1, -3, 0, 5, 0, 0, -7, -3, 9, 0, -6, 0, 0, 21, 0, -11, 0, -27, 0, 0, 0, 18, 18, 0, 25, 0, 0, -35, -54, 0, 0, 45, 0, 0, 0, 45, -38, 0, 0, 0, 0, 0, 58, -30, 0, -54, 0, 0, 49, -75, 0, 0, -6, 0, 0, 21, 0, 162, 0, 0, 0, 0, -63, -91, 0, 0, -118, 0, 0, 0, 114, -27 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number 15 of the 74 eta-quotients listed in Table I of Martin 1996.

Unique cusp form of weight 3 for congruence group Gamma_1(7). - Michael Somos, Aug 11 2011

REFERENCES

B. Berndt, Commentary on Ramanujan's Papers, pp. 357-426 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 372 (4).

N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. MR1722413 (2001a:11103)

N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 145, problem 13.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

N. Elkies, The Klein quartic in number theory

F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), no. 1, 1-17. see pp 9-10.

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers

FORMULA

Euler transform of period 7 sequence [ -3, -3, -3, -3, -3, -3, -6, ...]. - Michael Somos, Mar 11 2004

a(n) is multiplicative with a(7^e) = (-7)^e, a(p^e) = p^e * (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7), a(p^e) = a(p) * a(p^(e-1)) - p^2 * a(p^(e-2)) and a(2) = -3, a(p) = 2 * (x^2 - 7*y^2) where p = x^2 + 7*y^2 if p == 1, 2, 4 (mod 7). - Michael Somos, Apr 12 2008.

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u * w * (u + 6*v + 8*w) - v^3. - Michael Somos, May 02 2005.

G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(3/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Apr 12 2008

G.f.: x * (Product_{k>0} (1 - x^k) * (1 - x^(7*k)))^3.

G.f.: (1/2) * Sum_{u,v in Z} (u*u - 2*v*v) * x^(u*u + u*v + 2*v*v). - Michael Somos, Jun 14 2007

a(7*n + 3) = a(7*n + 5) = a(7*n + 6) = 0. - Michael Somos, Oct 19 2005

EXAMPLE

G.f. = q - 3*q^2 + 5*q^4 - 7*q^7 - 3*q^8 + 9*q^9 - 6*q^11 + 21*q^14 - 11*q^16 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^7])^3, {q, 0, n}]; (* Michael Somos, Aug 11 2011 *)

PROG

(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^7 + A))^3, n))}; /* Michael Somos, Apr 16 2005 */

(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( kronecker(-7, p)<1, if( p==7, (-1)^e, 1-e%2) * p^e, for(i=1, sqrtint(p\7), if( issquare(p - 7*i^2), y=i; break)); a0 = 1; a1 = y = if( p==2, -3, 2*p - 28*y^2); for(i=2, e, x = y * a1 - p^2 * a0; a0 = a1; a1 = x); a1)))}; /* Michael Somos, Oct 19 2005 */

(Sage) CuspForms( Gamma1(7), 3, prec = 72).0; # Michael Somos, Aug 11 2011

(MAGMA) Basis( CuspForms( Gamma1(7), 3), 72) [1]; /* Michael Somos, Dec 09 2013 */

CROSSREFS

Sequence in context: A136599 A227498 A131986 * A234434 A234020 A276833

Adjacent sequences:  A002653 A002654 A002655 * A002657 A002658 A002659

KEYWORD

sign,mult

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 15 18:26 EST 2017. Contains 296047 sequences.