The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A369307 The number of exponentially odd divisors d of n such that n/d is also exponentially odd. 2
1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 1, 4, 2, 2, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 4, 1, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 2, 4, 2, 4, 2, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
First differs from A366308 at n = 32.
Dirichlet convolution of A295316 with itself.
LINKS
FORMULA
Multiplicative with a(p^e) = 2 is e is odd, and e/2 if e is even.
a(n) >= 1, with equality if and only if n is the square of a squarefree number (A062503).
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(2*s)^2 * (Product_{p prime} (1 + 1/p^s - 1/p^(2*s)))^2.
From Vaclav Kotesovec, Jan 19 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (p^(2*s) + p^s - 1)^2 / ((p^s + 1)^2 * p^(2*s)).
Let f(s) = Product_{p prime} (p^(2*s) + p^s - 1)^2 / ((p^s + 1)^2 * p^(2*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (2*p^2 + 2*p - 1) / (p^2*(p+1)^2)) = 0.49623881454854881762168565097162197963340069996226074849602334089041678...,
f'(1) = f(1) * Sum_{p prime} 2*(2*p + 1) * log(p) / ((p+1)*(p^2 + p - 1)) = f(1) * 1.49674466685934940187617305887881799198585080518913793200171026177150513...
and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
f[p_, e_] := If[OddQ[e], 2, e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> if(x%2, 2, x/2), factor(n)[, 2]));
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X^2 + X)^2/(1 - X^2)^2)[n], ", ")) \\ Vaclav Kotesovec, Jan 19 2024
(Python)
from math import prod
from sympy import factorint
def A369307(n): return prod(2 if e&1 else e>>1 for e in factorint(n).values()) # Chai Wah Wu, Jan 19 2024
CROSSREFS
Sequence in context: A278762 A055076 A069780 * A366308 A347089 A354825
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 19 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 00:18 EDT 2024. Contains 373138 sequences. (Running on oeis4.)