login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352653 a(n) = Sum_{k = 0..n-1} binomial(n,k)*binomial(n-1,k)*binomial(n+k,k)*binomial(n-1+k,k). 3
0, 1, 13, 253, 5741, 142001, 3713305, 100961365, 2825369965, 80843126905, 2354354542013, 69555586698533, 2079506849058809, 62797822901091409, 1912714261589863633, 58691012753161717253, 1812592783819686728045, 56298976785759622597385, 1757493098495181029912485 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Compare with A005259(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2.
Main superdiagonal (or main subdiagonal) of the symmetric square array A143007.
This is the sequence (A(n,n-1,n,n-1)) in the notation of Straub 2014, where it is proved that the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.
More generally, for nonnegative integers A, B and C with A >= 2 let S(n;A,B,C) = Sum_{k = 1..n} binomial(n,k)^A * binomial(n+k-1,k-1)^B * binomial(2*k,n)^C. Then we conjecture the sequence (S(n;A,B,C))n>=1 satisfies the same supercongruences. This is the case A = B = 2, C = 0. Compare with Osburn et al., Theorem 1.2.
LINKS
Robert Osburn, Brundaban Sahu and Armin Straub, Supercongruences for sporadic sequences, arXiv:1312.2195 [math.NT], 2013-2014.
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
Eric Weisstein's World of Mathematics, Strehl identities
FORMULA
The sequence can be extended to negative values of n:
a(-n) = Sum_{k} binomial(-n,k)*binomial(-n+k,k)*binomial(-n-1,k)*binomial(-n-1+k,k) = a(n), since binomial(-m,k) = (-1)^k*binomial(m+k-1,k) for nonnegative k.
a(n) = A177316(n)/2 for n >= 1.
a(n) = Sum_{k = 1..n} binomial(n,k)^2*binomial(n+k-1,k-1)^2.
a(n) = (1/2)*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k-1,k)^2 for n >= 1.
a(n) = hypergeom([n, n+1, -n, -n+1], [1, 1, 1], 1) for n >= 1.
a(n) = (1/2)*hypergeom([n, n, -n, -n], [1, 1, 1], 1) for n >= 1.
a(n) = (1/4)*binomial(2*n,n)^2*hypergeom([-n+1, -n+1, -n, -n], [1, -2*n+1, -2*n+1], 1) for n >= 1
a(n) = [x^n*y^(n-1)*z^n*t^(n-1)] 1/((1 - x - y)(1 - z - t) - x*y*z*t).
a(n) = [x^n] 1/(1 - x) * P(n-1,(1 + x)/(1 - x))^2 = [x^(n-1)] 1/(1 - x) * P(n,(1 + x)/(1 - x))^2 for n >= 1, where P(n,x) denotes the n-th Legendre polynomial. Cf. A005259(n) = [x^n] 1/(1 - x) * P(n,(1 + x)/(1 - x))^2.
(n + 1)^3*(2*n - 1)(3*n^2 - 3*n + 1)*a(n+1) = 2*(102*n^6 - 68*n^4 + 21*n^2 - 3)*a(n) - (n - 1)^3*(2*n + 1)*(3*n^2 + 3*n + 1)*a(n-1) with a(0) = 0 and a(1) = 1.
The Gauss congruences a(n*p^r) == a(n*p^(r-1)) (mod p^r) hold for all primes p and all positive integers n and r. It follows that the expansion of exp( Sum_{n >= 1} a(n)/n*x^n ) = 1 + x + 7*x^2 + 91*x^3 + 1544*x^4 + 30448*x^5 + 661506*x^6 + 15377010*x^7 + ... has integer coefficients.
a(n) = n^2*hypergeom([1 - n, 1 - n, 1 + n, 1 + n], [1, 2, 2], 1]. - Peter Luschny, Apr 17 2022
From Peter Bala, Mar 18 2023: (Start)
a(n) = Sum_{k = 0..n-1} (n-k)/(n+k) * binomial(n,k)^2 * binomial(n+k,k)^2.
a(n) = 1/6*(A005259(n) + A005259(n-1)). (End)
a(n) ~ (1 + sqrt(2))^(4*n) / (2^(9/4) * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 29 2023
a(n) = (1/3)*Sum_{k = 0..n} binomial(n,k)*binomial(n+k-1,k)*f(k) for n >= 1, where f(n) = A000172(n) denotes the n-th Franel number. Cf. A005259(n) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k,k)*f(k) (the second Strehl identity). - Peter Bala, Jun 26 2023
EXAMPLE
Examples of supercongruences:
a(11) - a(1) = 69555586698533 - 1 = (2^2)*(11^3)*1321*2521*3923 == 0 (mod 11^3).
a(2*7) - a(2) = 1912714261589863633 - 13 = (2^2)*(3^2)*5*(7^3)*776221* 39911503 == 0 (mod 7^3).
MAPLE
seq(add(binomial(n, k)^2*binomial(n+k-1, k-1)^2, k = 1..n), n = 0..20);
MATHEMATICA
a[n_] := n^2 HypergeometricPFQ[{1 - n, 1 - n, 1 + n, 1 + n}, {1, 2, 2}, 1];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Apr 17 2022 *)
PROG
(PARI) a(n) = sum(k=1, n, binomial(n, k)^2*binomial(n+k-1, k-1)^2); \\ Michel Marcus, Apr 19 2022
(Python)
def A352653(n):
if n == 0: return 0
m, g = 1, 0
for k in range(n+1):
g += m*n**2//(n+k)**2
m *= ((n+k+1)*(n-k))**2
m //= (k+1)**4
return g>>1 # Chai Wah Wu, Oct 03 2022
CROSSREFS
Sequence in context: A332849 A001508 A157946 * A321849 A034242 A142811
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 06 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 10 12:47 EDT 2024. Contains 372387 sequences. (Running on oeis4.)