The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337408 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the edges of a regular n-dimensional orthotope (hypercube) using k or fewer colors. 8
1, 2, 1, 3, 6, 1, 4, 21, 144, 1, 5, 55, 12111, 11251322, 1, 6, 120, 358120, 4825746875682, 314824456456819827136, 1, 7, 231, 5131650, 48038446526132256, 38491882660019692002988737797054040, 136221825854745676520058554256163406987047485113810944, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is a cube with 12 edges. The number of edges is n*2^(n-1).
Also the number of unoriented colorings of the regular (n-2)-dimensional simplexes in a regular n-dimensional orthoplex.
LINKS
FORMULA
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337407(n,k) - A337409(n,k) = (A337407(n,k) - A337410(n,k)) / 2 = A337409(n,k) + A337410(n,k).
EXAMPLE
Table begins with T(1,1):
1 2 3 4 5 6 7 8 9 ...
1 6 21 55 120 231 406 666 1035 ...
1 144 12111 358120 5131650 45528756 288936634 1433251296 5887880415 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
MATHEMATICA
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
array[n_, k_] := row[n] /. b -> k
Table[array[n, d+m-n], {d, 7}, {n, m, d+m-1}] // Flatten
CROSSREFS
Cf. A337407 (oriented), A337409 (chiral), A337410 (achiral).
Rows 1-4 are A000027, A002817, A199406, A331359.
Cf. A327084 (simplex edges), A337412 (orthoplex edges), A325013 (orthotope vertices).
Sequence in context: A337389 A120257 A337412 * A059298 A214306 A337411
KEYWORD
nonn,tabl
AUTHOR
Robert A. Russell, Aug 26 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 09:41 EDT 2024. Contains 372733 sequences. (Running on oeis4.)