The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332060 a(n) = 3*a(n-1) + a(n-2) after initial values a(0..5) = (0, 1, 2, 3, 5, 13). 1
0, 1, 2, 3, 5, 13, 44, 145, 479, 1582, 5225, 17257, 56996, 188245, 621731, 2053438, 6782045, 22399573, 73980764, 244341865, 807006359, 2665360942, 8803089185, 29074628497, 96026974676, 317155552525, 1047493632251, 3459636449278, 11426402980085 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
These numbers arise as borders of intervals [a(n), a(n+1)] = [b(k)=k, b(m)=m] with m := b(k) + b(k-1) after the "holes" between the borders have been filled according to b(k+1) = b(k) + b(m) and b(m-1) = b(k+1) + b(n) for any such interval of length m - k > 2, i.e., starting from k = 5, m = 13.
The initial terms correspond to intervals of length <= 2 with only 0 or 1 "holes" to fill: In the first case we have the same recursion rule as for the Fibonacci sequence, and when there's one hole (between 3 and 5) the next Fibonacci number b(k+1) = b(k) + b(m) = 3 + 5 = 8 gets filled in there, and the next border is m = b(k) + b(k-1) = 5 + 8 = 13. See Example for more.
LINKS
FORMULA
G.f.: x*(1 - x - 4*x^2 - 6*x^3 - 5*x^4)/(1 - 3*x - x^2).
EXAMPLE
The initial a(0) is conventional. (One could also choose a(0) = 1 to have a(2) = a(1) + a(0) as for the next two terms, but this wouldn't correspond to b(m) = b(k) + b(k-1), either.)
We start with [a(1), a(2)] = [1, 2].
No gap or "hole" here to fill, so the next interval [a(2), a(3)] has upper bound a(3) = a(2) + 1 = 3, where 1 is the element just left to the right border a(2).
Again, no gap or hole to fill in [2, 3], so the next interval has upper bound a(4) = a(3) + 2 = 5, where 2 is the element just left to the right border a(3).
Now there's a hole in (3, 5), at position 4, which is filled with 3 + 5 = 8, so the next upper bound is a(5) = a(4) + 8 = 5 + 8 = 13: here the number 8 was the element left to the right border 5.
Now there are several holes in (5, 13). The leftmost one (position 6) is filled with 5 + 13 = 18, and the rightmost (position 12) is filled with 18 + 13 = 31. So the next interval [a(5), a(6)] has upper bound a(6) = a(5) + 31 = 44.
PROG
(PARI)
for(n=1+#a=[0, 1, 2, 3, 5, 13], #a=Vec(a, 30), a[n]=a[n-1]*3+a[n-2]); a \\ Remove initial 0 to get a[1] = 1 etc.
apply( {A332060(n)=if(n>3, [5, 13]*([0, 1; 1, 3]^(n-4))[, 1], n)}, [0..20])
CROSSREFS
Cf. A000045 (Fibonacci numbers F(n+1) = F(n) + F(n-1)); A006190, A052924, A006497 (a(n+1) = 3*a(n) + a(n-1)); A000129 (Pell numbers a(n+1) = 2*a(n) + a(n-1)).
Sequence in context: A192241 A093999 A042445 * A048634 A012899 A215102
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 04 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 00:08 EDT 2024. Contains 373206 sequences. (Running on oeis4.)