The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326480 T(n, k) = 2^n * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n. Coefficients of Euler polynomials of order 2. 6

%I #21 Jul 15 2019 02:44:33

%S 1,-2,2,2,-8,4,4,12,-24,8,-16,32,48,-64,16,-32,-160,160,160,-160,32,

%T 272,-384,-960,640,480,-384,64,544,3808,-2688,-4480,2240,1344,-896,

%U 128,-7936,8704,30464,-14336,-17920,7168,3584,-2048,256

%N T(n, k) = 2^n * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n. Coefficients of Euler polynomials of order 2.

%C T(m, n, k) = 2^n * n! * [x^k] [z^n] (2^m*exp(x*z))/(exp(z) + 1)^m are the coefficients of the generalized Euler polynomials (or Euler polynomials of higher order).

%C The classical case (m=1) is in A004174, this sequence is case m=2. A different normalization for m=1 is given in A058940 and for m=2 in A326485.

%C Generalized Euler numbers are 2^n*Sum_{k=0..n} T(m, n, k)*(1/2)^k. The classical Euler numbers are in A122045 and for m=2 in A326483.

%H NIST Digital Library of Mathematical Functions, §24.16(i), <a href="https://dlmf.nist.gov/24.16#i">Higher-Order Analogs (of Bernoulli and Euler Polynomials)</a>, Release 1.0.23 of 2019-06-15.

%e Triangle starts:

%e [0] [ 1]

%e [1] [ -2, 2]

%e [2] [ 2, -8, 4]

%e [3] [ 4, 12, -24, 8]

%e [4] [ -16, 32, 48, -64, 16]

%e [5] [ -32, -160, 160, 160, -160, 32]

%e [6] [ 272, -384, -960, 640, 480, -384, 64]

%e [7] [ 544, 3808, -2688, -4480, 2240, 1344, -896, 128]

%e [8] [ -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256]

%e [9] [-15872, -142848, 78336, 182784, -64512, -64512, 21504, 9216, -4608, 512]

%p E2 := proc(n) (4*exp(x*z))/(exp(z) + 1)^2;

%p series(%, z, 48); 2^n*n!*coeff(%, z, n) end:

%p ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(E2(n), x), n=0..9)]);

%t T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z]+1)^2, {z, 0, n}, {x, 0, k}];

%t Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 15 2019 *)

%Y Let E2_{n}(x) = Sum_{k=0..n} T(n,k) x^k. Then E2_{n}(1) = A155585(n+1),

%Y E2_{n}(0) = A326481(n), E2_{n}(-1) = A326482(n), 2^n*E2_{n}(1/2) = A326483(n),

%Y 2^n*E2_{n}(-1/2) = A326484(n), [x^n] E2_{n}(x) = A000079(n).

%Y Cf. A004174, A058940, A326485, A122045, A081733.

%K sign,tabl

%O 0,2

%A _Peter Luschny_, Jul 11 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 09:57 EDT 2024. Contains 373162 sequences. (Running on oeis4.)