The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326480 T(n, k) = 2^n * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n. Coefficients of Euler polynomials of order 2. 6
1, -2, 2, 2, -8, 4, 4, 12, -24, 8, -16, 32, 48, -64, 16, -32, -160, 160, 160, -160, 32, 272, -384, -960, 640, 480, -384, 64, 544, 3808, -2688, -4480, 2240, 1344, -896, 128, -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
T(m, n, k) = 2^n * n! * [x^k] [z^n] (2^m*exp(x*z))/(exp(z) + 1)^m are the coefficients of the generalized Euler polynomials (or Euler polynomials of higher order).
The classical case (m=1) is in A004174, this sequence is case m=2. A different normalization for m=1 is given in A058940 and for m=2 in A326485.
Generalized Euler numbers are 2^n*Sum_{k=0..n} T(m, n, k)*(1/2)^k. The classical Euler numbers are in A122045 and for m=2 in A326483.
LINKS
NIST Digital Library of Mathematical Functions, §24.16(i), Higher-Order Analogs (of Bernoulli and Euler Polynomials), Release 1.0.23 of 2019-06-15.
EXAMPLE
Triangle starts:
[0] [ 1]
[1] [ -2, 2]
[2] [ 2, -8, 4]
[3] [ 4, 12, -24, 8]
[4] [ -16, 32, 48, -64, 16]
[5] [ -32, -160, 160, 160, -160, 32]
[6] [ 272, -384, -960, 640, 480, -384, 64]
[7] [ 544, 3808, -2688, -4480, 2240, 1344, -896, 128]
[8] [ -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256]
[9] [-15872, -142848, 78336, 182784, -64512, -64512, 21504, 9216, -4608, 512]
MAPLE
E2 := proc(n) (4*exp(x*z))/(exp(z) + 1)^2;
series(%, z, 48); 2^n*n!*coeff(%, z, n) end:
ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(E2(n), x), n=0..9)]);
MATHEMATICA
T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z]+1)^2, {z, 0, n}, {x, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 15 2019 *)
CROSSREFS
Let E2_{n}(x) = Sum_{k=0..n} T(n,k) x^k. Then E2_{n}(1) = A155585(n+1),
E2_{n}(0) = A326481(n), E2_{n}(-1) = A326482(n), 2^n*E2_{n}(1/2) = A326483(n),
2^n*E2_{n}(-1/2) = A326484(n), [x^n] E2_{n}(x) = A000079(n).
Sequence in context: A344897 A011202 A085484 * A116585 A230935 A008293
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 11 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 07:22 EDT 2024. Contains 372498 sequences. (Running on oeis4.)