The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288485 Expansion of (E_4(q) - 28*E_4(q^2) + 63*E_4(q^3) - 36*E(q^6)) / 240. 1
1, -19, 91, -179, 126, -1, 344, -1459, 2521, -2394, 1332, -737, 2198, -6536, 11466, -11699, 4914, 485, 6860, -22554, 31304, -25308, 12168, -6625, 15751, -41762, 68131, -61576, 24390, -126, 29792, -93619, 121212, -93366, 43344, -15803, 50654, -130340 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Define f(q) = (eta(q^2)*eta(q^3))^7/(eta(q)*eta(q^6))^5, g(q) = Sum_{n>=1} a(n)/n^3 * q^n and t(q) = (eta(q)*eta(q^6)/(eta(q^2)*eta(q^3))^12.
And define the sequence {b(n)} = {0, 6, 351/4, 62531/36, ...} as the solutions of the recursion (n+1)^3*b(n+1) = (34*n^3 + 51*n^2 + 27*n +5)*b(n) - n^3*b(n-1), n >= 1 with b(0) = 0, b(1) = 6.
The following equation holds: 6*f(q)*g(q) = Sum_{n>=0} b(n)*t(q)^n.
REFERENCES
D. Zagier, "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103.
LINKS
Wikipedia, Apéry's theorem.
EXAMPLE
6*f(q)*g(q)
= 6*(1 + 5*q + 13*q^2 + 23*q^3 + 29*q^4 + 30*q^5 + 31*q^6 + 40*q^7 + ... )
*(q - 19/8*q^2 + 91/27*q^3 - 179/64*q^4 + 126/125*q^5 - 1/216*q^6 + 344/343q^7 - ... )
= 6*q + 63/4*q^2 + 971/36*q^3 + 10679/288*q^4 + 1126103/36000*q^5 + 105401/2400*q^6 + 536870027/12348000*q^7 + ...
= 6 * (q - 12*q^2 + 66*q^3 - 220*q^4 + 495*q^5 - 804*q^6 + 1068*q^7 - ... )
+ 351/4 * (q^2 - 24*q^3 + 276*q^4 - 2024*q^5 + 10626*q^6 - 42528*q^7 + ... )
+ 62531/36 * (q^3 - 36*q^4 + 630*q^5 - 7140*q^6 + 58905*q^7 - ... )
+ 11424695/288 * (q^4 - 48*q^5 + 1128*q^6 - 17296*q^7 + ... )
+ 35441662103/36000 * (q^5 - 60*q^6 + 1770*q^7 - ... )
+ ...
MATHEMATICA
a[n_Integer] := Module[{b, ary}, b = Join[{0}, Table[DivisorSigma[3, i], {i, 1, n}]]; ary = b; Do[If[Mod[i, 2] == 0, ary[[i + 1]] -= 28*b[[i/2 + 1]]]; If[Mod[i, 3] == 0, ary[[i + 1]] += 63*b[[i/3 + 1]]]; If[Mod[i, 6] == 0, ary[[i + 1]] -= 36*b[[i/6 + 1]]]; , {i, 1, n}]; Rest[ary]]; a[38] (* Robert P. P. McKone, Aug 23 2023 *)
PROG
(Ruby)
def A001158(n)
s = 0
(1..n).each{|i| s += i * i * i if n % i == 0}
s
end
def A288485(n)
a = [0] + (1..n).map{|i| A001158(i)}
ary = a.clone
(1..n).each{|i|
ary[i] -= 28 * a[i / 2] if i % 2 == 0
ary[i] += 63 * a[i / 3] if i % 3 == 0
ary[i] -= 36 * a[i / 6] if i % 6 == 0
}
ary[1..-1]
end
p A288485(100)
CROSSREFS
{b(n)} = {A059415(n)/A059416(n)} = {0, 6, 351/4, 62531/36, ...}.
Cf. A001158 (sigma_3(n)), A004009 (E_4), A006353 (f(q)), A226235 (t(q)).
Sequence in context: A038653 A043232 A044012 * A214532 A118294 A157098
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 09 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 10:20 EDT 2024. Contains 372594 sequences. (Running on oeis4.)