The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282561 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both 2*x - y and 4*z^2 + 724*z*w + w^2 are squares. 4
1, 2, 2, 2, 4, 3, 5, 1, 3, 4, 2, 2, 2, 5, 7, 3, 2, 5, 3, 1, 4, 7, 7, 3, 2, 2, 2, 4, 3, 8, 8, 3, 2, 2, 4, 4, 9, 3, 9, 3, 4, 5, 6, 3, 3, 7, 5, 2, 2, 11, 6, 5, 4, 7, 7, 4, 2, 4, 3, 2, 2, 5, 10, 6, 4, 5, 9, 1, 7, 8, 10, 4, 4, 5, 6, 5, 3, 9, 3, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 7, 19, 67, 191, 235, 265, 347, 888, 2559).
By the linked JNT paper, any nonnegative integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(z-w) = 0. Whether z = 0 or z = w, the number 4*z^2 + 724*z*w + w^2 is definitely a square.
See also A282562 for a similar conjecture.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with 2*1 - 2 = 0^2 and 4*1^2 + 724*1*1 + 1^2 = 27^2.
a(19) = 1 since 19 = 1^2 + 1^2 + 1^2 + 4^2 with 2*1 - 1 = 1^2 and 4*1^2 + 724*1*4 + 4^2 = 54^2.
a(67) = 1 since 67 = 4^2 + 7^2 + 1^2 + 1^2 with 2*4 - 7 = 1^2 and 4*1^2 + 724*1*1 + 1^2 = 27^2.
a(191) = 1 since 191 = 9^2 + 2^2 + 5^2 + 9^2 with 2*9 - 2 = 4^2 and 4*5^2 + 724*5*9 + 9^2 = 181^2.
a(235) = 1 since 235 = 7^2 + 13^2 + 1^2 + 4^2 with 2*7 - 13 = 1^2 and 4*1^2 + 724*1*4 + 4^2 = 54^2.
a(265) = 1 since 265 = 4^2 + 7^2 + 10^2 + 10^2 with 2*4 - 7 = 1 and 4*10^2 + 724*10*10 + 10^2 = 270^2.
a(347) = 1 since 347 = 8^2 + 7^2 + 15^2 + 3^2 with 2*8 - 7 = 3^2 and 4*15^2 + 724*15*3 + 3^2 = 183^2.
a(888) = 1 since 888 = 14^2 + 12^2 + 8^2 + 22^2 with 2*14 - 12 = 4^2 and 4*8^2 + 724*8*22 + 22^2 = 358^2.
a(2559) = 1 since 2559 = 26^2 + 3^2 + 5^2 + 43^2 with 2*26 - 3 = 7^2 and 4*5^2 + 724*5*43 + 43^2 = 397^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[2x-y], Do[If[SQ[n-x^2-y^2-z^2]&&SQ[4z^2+724z*Sqrt[n-x^2-y^2-z^2]+(n-x^2-y^2-z^2)], r=r+1], {z, 0, Sqrt[n-x^2-y^2]}]], {y, 0, Sqrt[4n/5]}, {x, Ceiling[y/2], Sqrt[n-y^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
CROSSREFS
Sequence in context: A247301 A239858 A031437 * A237598 A138241 A234615
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 18 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 18:30 EDT 2024. Contains 373107 sequences. (Running on oeis4.)