login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267482 Triangle of coefficients of Gaussian polynomials [2n+1,1]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=n. 7
1, 1, 1, -1, 1, 1, -1, -2, 1, 1, 1, -2, -3, 1, 1, 1, 3, -3, -4, 1, 1, -1, 3, 6, -4, -5, 1, 1, -1, -4, 6, 10, -5, -6, 1, 1, 1, -4, -10, 10, 15, -6, -7, 1, 1, 1, 5, -10, -20, 15, 21, -7, -8, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
The entry a(n,k), n >= 0, k = 0,1,...,g, where g=n, of this irregular triangle is the coefficient of (1+q^2)^k*q^(g-k) in the representation of the Gaussian polynomial [2n+1,1]_q = Sum_{k=0..g) a(n,k)*(1+q^2)^k*q^(g-k).
The sequence arises in the formal derivation of the stability polynomial B(x) = Sum_{i=0..N} d_i T(iM,x) of rank N, and degree L, where T(iM,x) denotes the Chebyshev polynomial of the first kind of degree iM. The coefficients d_i are determined by order conditions on the stability polynomial.
Conjecture: More generally, the Gaussian polynomial [2*n+m+1-(m mod 2),m]_q = Sum_{k=0..g(m;n)} a(m;n,k)*(1+q^2)^k*q^(g(m;n)-k), for m >= 0, n >= 0, where g(m;n) = m*n if m is odd and (2*n+1)*m/2 if m is even, and the tabf array entries a(m;n,k) are the coefficients of the g.f. for the row n polynomials G(m;n,x) = (d^m/dt^m)G(m;n,t,x)/m!|_{t=0}, with G(m;n,t,x) = (1+t)*Product_{k=1..n+(m - m (mod 2))/2}(1 + t^2 + 2*t*T(k,x/2) (Chebyshev's T-polynomials). Hence a(m;n,k) = [x^k]G(m;n,x), for k=0..g(m;n). The present entry is the instance m = 2. (Thanks to Wolfdieter Lang for clarifying the text on the general prescription of a(m;n,k).)
Signed version of A046854, A130777.
Conjecture: row n is U(n, x/2) + U(n-1, x/2) where U is the sequence of Chebyshev polynomials of the second kind. - Thomas Baruchel, Jun 03 2018 [For a proof see the following comment.]
From Wolfdieter Lang, Oct 19 2019: (Start)
The row polynomial R(n, x) = Sum_{k=0..n} a(n, k)*x^k = [2*n+1]_q / q^n with the q-number [2*n+1]_q := (1 - q^n)/(1 - q), which for q = 1 becomes 2*n+1, and x = x(q) = q + q^(-1). See the simplified Name and the first comment. In terms of Chebyshev S polynomials (A049310) this q-number is written as [2*n+1]_q = q^n*S(2*n, q^(1/2) + q^(-1/2)), hence R(n, x) = S(2*n, sqrt(2+x)) = S(n, x) + S(n-1, x) (which proves the conjecture of the previous comment).
For the o.g.f. of R(n, x) see the formula section.
My motivation for looking at this sequence came from the Brändli and Beyne paper's recurrence for the polynomial P_m(s) which coincides with R(n, x), with m -> n and s -> x. (End)
A294099(n, k) = Sum_{j=0..k} n^j * T(n, j) for all n, k in Z. - Michael Somos, Jun 19 2023
LINKS
Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016-2017. Definition 6.for polynomials P_m(s).
Stephen O'Sullivan, A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics, 300 (2015), 665-678.
FORMULA
G.f. for row polynomial: G(n,x) = (d^2/dt^2)((1+t)*Product_{i=1..n+1}(1+t^2+2t*T(i,x/2)))|_{t=0}.
From Wolfdieter Lang, Oct 19 2019: (Start)
Row polynomial R(n, x) = S(2*n, sqrt(2+x)) = S(n, x) + S(n-1, x) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*(2 + x)^(n-k), for n >= 0. (See the Thomas Baruchel conjecture and the proof above.) For the S(n, x) coefficients see A049310.
R(n, x) = Sum_{j=0} (-1)^e(n,j)*binomial(e(n,j) + j, j)*x^j*, with e(n,j) := floor((n-j)/2). See eq. (12) of the Brändli and Beyne paper.
G.f. for row polynomials R(n, x) (that is of the triangle): G(x,z) = (1 + z)/(1 - x*z + z^2).
Recurrence for R(n, x): R(-1, x) = -1, R(0, x) = 1, R(n, x) = x*R(n-1, x) - R(n-2, x), for n >= 1. (See the Brändli and Beyne link, polynomials P_m(s) in Definition 6.)
(End)
T(n,k) = (-1)^(floor((n-k)/2))*binomial(floor((n+k)/2), k). - François Marques, Sep 28 2021
EXAMPLE
Triangle begins:
1;
1, 1;
-1, 1, 1;
-1, -2, 1, 1;
1, -2, -3, 1, 1;
1, 3, -3, -4, 1, 1;
-1, 3, 6, -4, -5, 1, 1;
-1, -4, 6, 10, -5, -6, 1, 1;
1, -4, -10, 10, 15, -6, -7, 1, 1;
1, 5, -10, -20, 15, 21, -7, -8, 1, 1;
MAPLE
A267482 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n), t))): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267482(n, k), k = 0 .. n), n = 0 .. 20);
MATHEMATICA
row[n_] := D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n}], t] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 16 2016 *)
PROG
(PARI) T(n, k) = (-1)^((n-k)\2)*binomial((n+k)\2, k); \\François Marques, Sep 28 2021
CROSSREFS
Cf. A046854, A066170, A130777, A187660 all signed versions.
Sequence in context: A130461 A225631 A306209 * A130777 A187660 A066170
KEYWORD
sign,tabl,easy
AUTHOR
Stephen O'Sullivan, Jan 15 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 3 14:53 EDT 2024. Contains 372215 sequences. (Running on oeis4.)