login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263916 Coefficients of the Faber partition polynomials. 28
-1, -2, 1, -3, 3, -1, -4, 4, 2, -4, 1, -5, 5, 5, -5, -5, 5, -1, -6, 6, 6, -6, 3, -12, 6, -2, 9, -6, 1, -7, 7, 7, -7, 7, -14, 7, -7, -7, 21, -7, 7, -14, 7, -1, -8, 8, 8, -8, 8, -16, 8, 4, -16, -8, 24, -8, -8, 12, 24, -32, 8, 2, -16, 20, -8, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The coefficients of the Faber polynomials F(n,b(1),b(2),...,b(n)) (Bouali, p. 52) in the order of the partitions of Abramowitz and Stegun. Compare with A115131 and A210258.
These polynomials occur in discussions of the Virasoro algebra, univalent function spaces and the Schwarzian derivative, symmetric functions, and free probability theory. They are intimately related to symmetric functions, free probability, and Appell sequences through the raising operator R = x - d log(H(D))/dD for the Appell sequence inverse pair associated to the e.g.f.s H(t)e^(xt) (cf. A094587) and (1/H(t))e^(xt) with H(0)=1.
Instances of the Faber polynomials occur in discussions of modular invariants and modular functions in the papers by Asai, Kaneko, and Ninomiya, by Ono and Rolen, and by Zagier. - Tom Copeland, Aug 13 2019
The Faber polynomials, denoted by s_n(a(t)) where a(t) is a formal power series defined by a product formula, are implicitly defined by equation 13.4 on p. 62 of Hazewinkel so as to extract the power sums of the reciprocals of the zeros of a(t). This is the Newton identity expressing the power sum symmetric polynomials in terms of the elementary symmetric polynomials/functions. - Tom Copeland, Jun 06 2020
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)
REFERENCES
H. Airault, "Symmetric sums associated to the factorization of Grunsky coefficients," in Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes: Vol. 47, edited by J. Harnad and P. Winternitz, American Mathematical Society, 2009.
D. Bleeker and B. Booss, Index Theory with Applications to Mathematics and Physics, International Press, 2013, (see section 16.7 Characteristic Classes and Curvature).
M. Hazewinkel, Formal Groups and Applications, Academic Press, New York San Francisco London, 1978, p. 120.
F. Hirzebruch, Topological methods in algebraic geometry. Second, corrected printing of the third edition. Die Grundlehren der Mathematischen Wissenschaften, Band 131 Springer-Verlag, Berlin Heidelberg New York, 1978, p. 11 and 92.
D. Knutson, λ-Rings and the Representation Theory of the Symmetric Group, Lect. Notes in Math. 308, Springer-Verlag, 1973, p. 35.
D. Yau, Lambda-Rings, World Scientific Publishing Co., Singapore, 2010, p. 45.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
H. Airault, Remarks on Faber polynomials, International Mathematical Forum, 3, no. 9, 2008, pages 449-456.
H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bulletin des Sciences Mathématiques, Volume 130, Issue 3, April-May 2006, pages 179-222.
H. Airault and Y. Neretin, On the action of the Virasoro algebra on the space of univalent functions, arXiv:0704.2149 [math.RT], 2007.
F. Ardila, Algebraic and geometric methods in enumerative combinatorics, arXiv:1409.2562 [math.CO], 2015.
T. Asai, M. Kaneko, and H. Ninomiya, Zeros of certain modular functions and an application, 1997.
A. Bouali, Faber polynomials Cayley-Hamilton equation and Newton symmetric functions, Bulletin des Sciences Mathématiques, Volume 130, Issue 1, Jan-Feb 2006, pages 49-70.
J. M. Campbell, Combinatorial interpretations of primitivity in the algebra of symmetric functions, Sarajevo J. Math., 17(30) (2021), 151--165.
P. Cartier, Mathemagics: A tribute to L. Euler and R. Feynman, Séminaire Lotharingien de Combinatoire 44 (2000), Article B44d, 2000, p. 53.
P. Cartier, A primer of Hopf algebras, preprint, Institut des Hautes Etudes Scientifiques, France, 2006, pp. 56 and 57.
V. Chan, Topological K-theory of complex projective spaces, senior's thesis UC Davis (p. 11 on Chern characters of complex vector bundles), 2013.
Gi-Sang Cheon, Hana Kim, and Louis W. Shapiro, An algebraic structure for Faber polynomials, Lin. Alg. Applic. 433 (2010) 1170-1179.
Tom Copeland, Lagrange a la Lah, 2011.
Tom Copeland, Addendum to Elliptic Lie Triad, 2015.
Tom Copeland, The Faber Appells, 2020.
D. Dugger, A Geometric Introduction to K-Theory, p. 288 (called Newton polynomials).
M. Eiermann and R. Varga, Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains, Elect. Trans. on Numer. Analysis, Vol. 1, p. 49-71, 1993.
H. Figueroa and J. Gracia-Bondia, Combinatorial Hopf algebras in quantum field theory I, arXiv:0408145 [hep-th], 2005, (normalized versions on pp. 42 and 78, denoted as Schur polynomials).
R. Friedrich and J. McKay, Formal groups, Witt vectors and free probability, arXiv:1204.6522 [math.OA], 2012.
A. Hatcher, Vector Bundles and K-Theory, Version 2.2, 2017, p. 63.
M. Hazewinkel, Three lectures on formal group laws, Canadian Mathematical Society Conference Proceedings, Vol. 5, p. 51-67, 1986.
Y. He, The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning, arXiv:1812.02893 [hep-th], 2018, p. 146.
B. Konopelchenko, Quantum deformations of associative algebras and integrable systems, arXiv:0802.3022 [nlin.SI], 2008.
R. Lu, Regularized equivariant Euler classes and gamma functions, Ph.D. thesis, Dept. of Pure Mathematics, University of Adelaide, 2008, p. 86.
K. Maslanka, Effective method of computing Li’S coefficients and their propertie, arXiv:0402168v5 [math.NT], 2004, p. 6.
MathOverflow, Canonical reference for Chern characteristic classes, a question posed by Tom Copeland, 2019.
J. McKay and A. Sebbar, On replicable functions: an introduction, Frontiers in Number Theory, Physics, and Geometry II, pp. 373-386.
L. Nicolaescu, Lectures on the Geometry of Manifolds, p.337, 2018.
J. Novak and M. LaCroix, Three lectures on free probability, arXiv:1205.2097 [math.CO], 2012.
K. Ono and L. Rolen, On Witten's extremal partition functions , arXiv:1807.00444 [math.NT], 2019.
T. Takebe, Lee-Peng Teo, and A. Zabrodin, Löwner equations and dispersionless hierarchies, arXiv:math/0605161 [math.CV], p. 24, 2006.
Lee-Peng Teo, Analytic functions and integrable hierarchies-characterization of tau functions, Letters in Mathematical Physics, Vol. 64, Issue 1, Apr 2003, pp. 75-92 (also arXiv:hep-th/0305005, 2003).
Wikipedia, Newton identities.
D. Zagier, Traces of singular moduli, 2011.
FORMULA
-log(1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n.
-d(1 + b(1) x + b(2) x^2 + ...)/dx / (1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) x^(n-1).
F(n,b(1),...,b(n)) = -n*b(n) - Sum_{k=1..n-1} b(n-k)*F(k,b(1),...,b(k)).
Umbrally, with B(x) = 1 + b(1) x + b(2) x^2 + ..., B(x) = exp[log(1-F.x)] and 1/B(x) = exp[-log(1-F.x)], establishing a connection to the e.g.f. of A036039 and the symmetric polynomials.
The Stirling partition polynomials of the first kind St1(n,b1,b2,...,bn;-1) = IF(n,b1,b2,...,bn) (cf. the Copeland link Lagrange a la Lah, signed A036039, and p. 184 of Airault and Bouali), i.e., the cyclic partition polynomials for the symmetric groups, and the Faber polynomials form an inverse pair for isolating the indeterminates in their definition, for example, F(3,IF(1,b1),IF(2,b1,b2)/2!,IF(3,b1,b2,b3)/3!)= b3, with bk = b(k), and IF(3,F(1,b1),F(2,b1,b2),F(3,b1,b2,b3))/3!= b3.
The polynomials specialize to F(n,t,t,...) = (1-t)^n - 1.
See Newton Identities on Wikipedia on relation between the power sum symmetric polynomials and the complete homogeneous and elementary symmetric polynomials for an expression in multinomials for the coefficients of the Faber polynomials.
(n-1)! F(n,x[1],x[2]/2!,...,x[n]/n!) = - p_n(x[1],...,x[n]), where p_n are the cumulants of A127671 expressed in terms of the moments x[n]. - Tom Copeland, Nov 17 2015
-(n-1)! F(n,B(1,x[1]),B(2,x[1],x[2])/2!,...,B(n,x[1],...,x[n])/n!) = x[n] provides an extraction of the indeterminates of the complete Bell partition polynomials B(n,x[1],...,x[n]) of A036040. Conversely, IF(n,-x[1],-x[2],-x[3]/2!,...,-x[n]/(n-1)!) = B(n,x[1],...,x[n]). - Tom Copeland, Nov 29 2015
For a square matrix M, determinant(I - x M) = exp[-Sum_{k>0} (trace(M^k) x^k / k)] = Sum_{n>0} [ P_n(-trace(M),-trace(M^2),...,-trace(M^n)) x^n/n! ] = 1 + Sum_{n>0} (d[n] x^n), where P_n(x[1],...,x[n]) are the cycle index partition polynomials of A036039 and d[n] = P_n(-trace(M),-trace(M^2),...,-trace(M^n)) / n!. Umbrally, det(I - x M)= exp[log(1 - b. x)] = exp[P.(-b_1,..,-b_n)x] = 1 / (1-d.x), where b_k = tr(M^k). Then F(n,d[1],...,d[n]) = tr[M^n]. - Tom Copeland, Dec 04 2015
Given f(x) = -log(g(x)) = -log(1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n, action on u_n = F(n,b(1),...,b(n)) with A133932 gives the compositional inverse finv(x) of f(x), with F(1,b(1)) not equal to zero, and f(g(finv(x))) = f(e^(-x)). Note also that exp(f(x)) = 1 / g(x) = exp[Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n] implies relations among A036040, A133314, A036039, and the Faber polynomials. - Tom Copeland, Dec 16 2015
The Dress and Siebeneicher paper gives combinatorial interpretations and various relations that the Faber polynomials must satisfy for integral values of its arguments. E.g., Eqn. (1.2) p. 2 implies [2 * F(1,-1) + F(2,-1,b2) + F(4,-1,b2,b3,b4)] mod(4) = 0. This equation implies that [F(n,b1,b2,...,bn)-(-b1)^n] mod(n) = 0 for n prime. - Tom Copeland, Feb 01 2016
With the elementary Schur polynomials S(n,a_1,a_2,...,a_n) = Lah(n,a_1,a_2,...,a_n) / n!, where Lah(n,...) are the refined Lah polynomials of A130561, F(n,S(1,a_1),S(2,a_1,a_2),...,S(n,a_1,...,a_n)) = -n * a_n since sum_{n > 0} a_n x^n = log[sum{n >= 0} S(n,a_1,...,a_n) x^n]. Conversely, S(n,-F(1,a_1),-F(2,a_1,a_2)/2,...,-F(n,a_1,...,a_n)/n) = a_n. - Tom Copeland, Sep 07 2016
See Corollary 3.1.3 on p. 38 of Ardila and Copeland's two MathOverflow links to relate the Faber polynomials, with arguments being the signed elementary symmetric polynomials, to the logarithm of determinants, traces of powers of an adjacency matrix, and number of walks on graphs. - Tom Copeland, Jan 02 2017
The umbral inverse polynomials IF appear on p. 19 of Konopelchenko as partial differential operators. - Tom Copeland, Nov 19 2018
EXAMPLE
F(1,b1) = - b1
F(2,b1,b2) = -2 b2 + b1^2
F(3,b1,b2,b3) = -3 b3 + 3 b1 b2 - b1^3
F(4,b1,...) = -4 b4 + 4 b1 b3 + 2 b2^2 - 4 b1^2 b2 + b1^4
F(5,...) = -5 b5 + 5 b1 b4 + 5 b2 b3 - 5 b1^2 b3 - 5 b1 b2^2 + 5 b1^3 b2 - b1^5
------------------------------
IF(1,b1) = -b1
IF(2,b1,,b2) = -b2 + b1^2
IF(3,b1,b2,b3) = -2 b3 + 3 b1 b2 - b1^3
IF(4,b1,...) = -6 b4 + 8 b1 b3 + 3 b2^2 - 6 b1^2 b2 + b1^4
IF(5,...) = -24 b5 + 30 b1 b4 + 20 b2 b3 - 20 b1^2 b3 - 15 b1 b2^2 + 10 b1^3 b2 - b1^5
------------------------------
For 1/(1+x)^2 = 1- 2x + 3x^2 - 4x^3 + 5x^4 - ..., F(n,-2,3,-4,...) = (-1)^(n+1) 2.
------------------------------
F(n,x,2x,...,nx), F(n,-x,2x,-3x,...,(-1)^n n*x), and F(n,(2-x),1,0,0,...) are related to the Chebyshev polynomials through A127677 and A111125. See also A110162, A156308, A208513, A217476, and A220668.
------------------------------
For b1 = p, b2 = q, and all other indeterminates 0, see A113279 and A034807.
For b1 = -y, b2 = 1 and all other indeterminates 0, see A127672.
MATHEMATICA
F[0] = 1; F[1] = -b[1]; F[2] = b[1]^2 - 2 b[2]; F[n_] := F[n] = -b[1] F[n - 1] - Sum[b[n - k] F[k], {k, 1, n - 2}] - n b[n] // Expand;
row[n_] := (List @@ F[n]) /. b[_] -> 1 // Reverse;
Table[row[n], {n, 1, 8}] // Flatten // Rest (* Jean-François Alcover, Jun 12 2017 *)
CROSSREFS
Cf. Row sums of absolute values: A000225.
Cf. A263634.
Sequence in context: A368748 A207645 A115131 * A210258 A181108 A211782
KEYWORD
sign,tabf,easy
AUTHOR
Tom Copeland, Oct 29 2015
EXTENSIONS
More terms from Jean-François Alcover, Jun 12 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 30 07:17 EDT 2024. Contains 372127 sequences. (Running on oeis4.)