The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229031 Number of 5-colorings of the strong product of the complete graph K2 and the cycle graph Cn. 1
120, 0, 2400, 3840, 63360, 215040, 1943040, 9031680, 64665600, 346030080, 2243911680, 12792299520, 79437987840, 465890181120, 2838290104320, 16857940623360, 101834835886080, 608260231004160, 3660556491816960, 21919358464819200, 131692072607416320, 789448748118835200, 4739507238312345600, 28425784430470103040 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
The strong product of K2 and Cn can be regarded as the King's graph on a 2*n cylindrical (or equivalently toroidal) chessboard.
The Kneser graph construction of the Petersen graph relates this to the number of closed walks on the Petersen graph.
More generally, the number of c-colorings of the strong product of Km and Cn is equal to (m!)^n * (c choose m) * (number of closed walks of length n on K(c,m)).
If n is prime then a(n) is divisible by n, since the cyclic group of order n acts on the colorings, partitioning them into orbits of size n. More generally, n divides a(n) for any Carmichael number n, due to the closed form.
LINKS
Wolfram MathWorld, Graph Strong Product
FORMULA
a(n) = 6^n + 4*(-4)^n + 5*2^n.
a(n) = 10 * 2^n * A091000(n).
a(n) = 4*a(n-1)+20*a(n-2)-48*a(n-3). G.f.: -120*x^2*(4*x-1) / ((2*x-1)*(4*x+1)*(6*x-1)). - Colin Barker, Oct 20 2013
EXAMPLE
For n = 2, the graph is the complete graph K4, which has a(4) = 120 different 5-colorings corresponding to ordered 4-subsets of {1,2,3,4,5}.
For n = 3, the graph is the complete graph K6, which cannot be 5-colored, so a(3) = 0. Equivalently, there are no closed walks of length 3 on the Petersen graph.
MATHEMATICA
Table[2^n(3^n+4(-2)^n+5), {n, 2, 25}]
LinearRecurrence[{4, 20, -48}, {120, 0, 2400}, 24] (* or *) Drop[CoefficientList[Series[-120*x^2*(4*x - 1) / ((2*x - 1) * (4*x + 1) * (6*x - 1)), {x, 0, 25}], x], 2] (* Indranil Ghosh, Mar 03 2017 *)
PROG
(PARI) a(n) = (2^n) * (3^n + 4*(-2)^n + 5) \\ Indranil Ghosh, Mar 03 2017
(Python) def A229031(n) : return (2**n) * (3**n + 4*(-2)**n +5) # Indranil Ghosh, Mar 03 2017
CROSSREFS
Sequence in context: A156415 A073836 A242836 * A221406 A267428 A156739
KEYWORD
nonn,easy
AUTHOR
Adam P. Goucher, Sep 11 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 15:32 EDT 2024. Contains 372554 sequences. (Running on oeis4.)