The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228960 a(n) = [x^n] (1 + x + x^3 + x^4)^n. 5
1, 1, 4, 17, 51, 136, 393, 1233, 3865, 11851, 36301, 112520, 351352, 1098189, 3433704, 10758609, 33794505, 106344793, 335061790, 1056924667, 3338026857, 10554163533, 33402840615, 105809430024, 335444908176, 1064268538776, 3379009937161, 10735253448349, 34127137228747 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Equals the Logarithmic derivative of A198951, where the g.f. of A198951 satisfies: G(x) = (1 + x*G(x))*(1 + x^3*G(x)^3).
LINKS
FORMULA
L.g.f. L(x) satisfies:
(1) L(x) = log( (1/x)*Series_Reversion(x/((1+x)*(1+x^3))) ).
(2) L(x) = Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * exp(2*k*L(x)).
(3) L(x) = Sum_{n>=1} x^n/n * (1 - x^2*exp(2*L(x)))^(2*n+1) * Sum_{k>=0} C(n+k,k)^2 * x^(2*k) * exp(2*k*L(x)).
Conjecture: 3*n*(1661*n-1820) *(3*n-1) *(3*n-2) *a(n) +(1927258*n^4 -17091925*n^3 +50171975*n^2 -59448794*n +24442440) *a(n-1) +12*(-705605*n^4 +6363374*n^3 -20228575*n^2 +27219817*n -13185456) *a(n-2) +54*(n-2) *(250934*n^3 -1892927*n^2 +4367836*n -3055963) *a(n-3) -486*(n-2)*(n-3) *(26090*n-34343) *(2*n-7) *a(n-4)=0. - R. J. Mathar, Sep 15 2013.
Recurrence (of order 3): 3*n*(3*n-2)*(3*n-1)*(238*n^3 - 1302*n^2 + 2285*n - 1293)*a(n) = 2*(13328*n^6 - 92904*n^5 + 249452*n^4 - 329211*n^3 + 224408*n^2 - 74649*n + 9360)*a(n-1) - 18*(n-1)*(2380*n^5 - 15400*n^4 + 36710*n^3 - 39398*n^2 + 18345*n - 2880)*a(n-2) + 162*(n-2)*(n-1)*(2*n-5)*(238*n^3 - 588*n^2 + 395*n - 72)*a(n-3). - Vaclav Kotesovec, Dec 27 2013
a(n) ~ c*d^n/sqrt(n), where d = 1/81*((2144134 + 520506*sqrt(17))^(2/3) - 2036 + 112*(2144134 + 520506*sqrt(17))^(1/3))*(2144134 + 520506 * sqrt(17))^(-1/3) = 3.23407602060970245... is the root of the equation -324 + 180*d - 112*d^2 + 27*d^3 = 0 and c = 1/102*sqrt(17)*sqrt((34102 + 8262*sqrt(17))^(1/3)*((34102+8262*sqrt(17))^(2/3) + 136 + 136*(34102 + 8262*sqrt(17))^(1/3)))/((34102 + 8262*sqrt(17))^(1/3)*sqrt(Pi)) = 0.3061270429417747... - Vaclav Kotesovec, Dec 27 2013
From Peter Bala, Jun 15 2015: (Start)
a(n) = [x^(3*n)](1 + x + x^3 + x^4)^n.
a(n) = Sum_{k = 0..floor(n/3)} binomial(n,k)*binomial(n,3*k). Applying Maple's sumrecursion command to this formula gives the above recurrence of Kotesovec. (End)
a(n) = hypergeom([1/3-n/3, 2/3-n/3, -n, -n/3], [1/3, 2/3, 1], 1). - Vladimir Reshetnikov, Oct 04 2016
From Peter Bala, Apr 15 2023: (Start)
Conjecture 1: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. Cf. A350383.
Conjecture 2: let k be a positive integer, m an integer and let f(x) = g(x)/h(x), where both g(x) and h(x) are finite products of cyclotomic polynomials. Then the same supercongruences hold, except for a finite number of primes p depending on f(x), for the sequence {a_(k,m,f)(n): n >= 0} defined by a_(k,m,f)(n) = [x^(k*n)] f(x)^(m*n). (End)
EXAMPLE
L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 17*x^4/4 + 51*x^5/5 + 136*x^6/6 +...
Given G(x) = exp(L(x)), which is the g.f. of A198951:
G(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 39*x^6 + 99*x^7 + 271*x^8 + 763*x^9 + 2146*x^10 +...+ A198951(n)*x^n +...
then the l.g.f. L(x) satisfies the series:
L(x) = (1 + x^2*G(x)^2)*x
+ (1 + 2^2*x^2*G(x)^2 + x^4*G(x)^4)*x^2/2
+ (1 + 3^2*x^2*G(x)^2 + 3^2*x^4*G(x)^4 + x^6*G(x)^6)*x^3/3
+ (1 + 4^2*x^2*G(x)^2 + 6^2*x^4*G(x)^4 + 4^2*x^6*G(x)^6 + x^8*G(x)^8)*x^4/4
+ (1 + 5^2*x^2*G(x)^2 + 10^2*x^4*G(x)^4 + 10^2*x^6*G(x)^6 + 5^2*x^8*G(x)^8 + x^10*G(x)^10)*x^5/5 +...
The table of coefficients in (1 + x + x^3 + x^4)^n begins:
n=1: [1,(1), 0, 1, 1, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 2, (1), 2, 4, 2, 1, 2, 1, 0, 0, ...];
n=3: [1, 3, 3, (4), 9, 9, 6, 9, 9, 4, 3, ...];
n=4: [1, 4, 6, 8, (17), 24, 22, 28, 36, 28, 22, ...];
n=5: [1, 5, 10, 15, 30, (51), 60, 75, 105, 110, 100, ...];
n=6: [1, 6, 15, 26, 51, 96,(136), 180, 261, 326, 345, ...];
n=7: [1, 7, 21, 42, 84, 168, 273, (393), 588, 819, 987, ...];
n=8: [1, 8, 28, 64, 134, 280, 504, 792,(1233),1848, 2472, ...];
n=9: [1, 9, 36, 93, 207, 450, 876, 1494, 2439,(3865),5616, ...]; ...
the terms in parenthesis forms the initial terms of this sequence.
MAPLE
A228960 := proc(n)
(1+x+x^3+x^4)^n ;
coeftayl(%, x=0, n) ;
end proc: # R. J. Mathar, Sep 15 2013
MATHEMATICA
Table[Coefficient[(1 + x + x^3 + x^4)^n, x, n], {n, 1, 30}] (* Vaclav Kotesovec, Dec 27 2013 *)
Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n, -n/3}, {1/3, 2/3, 1}, 1], {n, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)
PROG
(PARI) {a(n)=polcoeff((1+x+x^3+x^4+x*O(x^n))^n, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1/x*serreverse(x/(1+x+x^3+x^4+x*O(x^n)))); n*polcoeff(log(A), n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=x); for(i=1, n, A=sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^(2*j)*exp(2*j*A+x*O(x^n)))*x^m/m)); n*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=1, n, (1-x^2*exp(2*A))^(2*m+1)*sum(j=0, n\2, binomial(m+j, j)^2*x^(2*j)*exp(2*j*A+x*O(x^n)))*x^m/m)); n*polcoeff(A, n, x)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A297817 A184445 A334694 * A370212 A131339 A362173
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Sep 10 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 07:10 EDT 2024. Contains 373207 sequences. (Running on oeis4.)