The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228853 Nodes of tree generated as follows: (1,2) is an edge, and if (x,y) is an edge, then (y,y+x) and (y,2y+x) are edges. 9
1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 21, 26, 27, 29, 30, 31, 34, 41, 43, 44, 45, 46, 47, 49, 50, 55, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 79, 80, 81, 89, 97, 99, 100, 101, 104, 105, 106, 108, 109, 111, 112, 115, 116, 117, 119, 121, 123, 128 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
As a tree, infinitely many branches are essentially linearly recurrent sequences. The extreme cases, (1,2) -> (2,3) -> (3,5) -> ... and (1,2) -> (2,5) -> (5,12) -> ..., contribute A000045 (Fibonacci numbers) and A000129 (Pell numbers) to A228853.
Suppose that (u,v) and (v,w) are consecutive edges. The continued fraction of w/v is obtained from the continued fraction of v/u by prefixing 1 if w = v + u, or 2 if w = 2v + u. Consequently, if each edge is labeled with 1 or 2 in the obvious way, then the continued fraction of w/v is the sequence of 1s and 2s, in reverse order, from the node 2 to the node w, with 2 attached at the end. (See Example, Part 2.)
Is A228853 essentially A141832? (If so, the answer to the question in Comments at A141832 is that A141832 is infinite.)
Yes; the initial node (1,2) adds a single 2 to the end of the fraction, and subsequent edges prepend 1's and 2's. - Charlie Neder, Oct 21 2018
LINKS
EXAMPLE
Part 1: Taking the first generation of edges of the tree to be G(1) = {(1,2)}, the edge (1,2) grows G(2) = {(2,3), (2,5)}, which grows G(3) = {(3,5), (3,8), (5,7), (5,12)}, ... Expelling duplicate nodes and sorting leave {1, 2, 3, 5, 7, 8, ...}.
Part 2: The branch 2, 3, 8, 11, 19, 30, 49, 128, 305 has edge-labels 1, 2, 1, 1, 1, 1, 2, 2, so that 305/128 = [2, 2, 1, 1, 1, 1, 2, 1, 2].
MATHEMATICA
f[x_, y_] := {{y, x + y}, {y, x + 2 y}}; x = 1; y = 2; t = {{x, y}}; u = Table[t = Flatten[Map[Apply[f, #] &, t], 1], {12}]; v = Flatten[u]; w = Flatten[Prepend[Table[v[[2 k]], {k, 1, Length[v]/2}], {x, y}]]; Sort[Union[w]]
CROSSREFS
Sequence in context: A298207 A347453 A229125 * A141832 A066680 A346635
KEYWORD
nonn,easy,nice
AUTHOR
Clark Kimberling, Sep 05 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 06:19 EDT 2024. Contains 372703 sequences. (Running on oeis4.)