login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209721 1/4 the number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences. 21
3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153, 65537, 98305, 131073, 196609, 262145, 393217, 524289, 786433, 1048577, 1572865, 2097153, 3145729 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Column 2 of A209727.
From Richard Locke Peterson, Apr 26 2020: (Start)
The formula a(n) = 2*a(n-2)-1 also fits empirically. With the given initial numbers a(1)=3, a(2)=4, a(3)=5, this new formula implies the old empirical formula. (But it is not established that the old empirical formula is true, so it is not established that the new formula is true either.) Furthermore, if the initial numbers had somehow, for example, been 3,4,6 instead, the new formula no longer implies the old formula.
If the new formula actually is true, it follows that a(n) is the number of distinct integer triangles that can be formed with sides of length a(n-1) and a(n-2), since the greatest length the third side can have is a(n-1)+a(n-2)-1, and the least length would be a(n-1)-a(n-2)+1. (End)
Conjectures: a(n) = A029744(n+1)+1. Also, a(n) = positions of the zeros in A309019(n+2) - A002487(n+2). - George Beck, Mar 26 2022
LINKS
FORMULA
Empirical: a(n) = a(n-1) +2*a(n-2) -2*a(n-3).
Empirical g.f.: x*(3+x-5*x^2)/((1-x)*(1-2*x^2)). [Colin Barker, Mar 23 2012]
EXAMPLE
Some solutions for n=4
..2..1..2....1..2..1....0..2..1....2..0..1....1..2..0....2..1..2....0..1..0
..0..2..0....2..0..2....1..0..2....1..2..0....2..0..1....0..2..0....2..0..2
..1..0..1....0..1..0....0..2..1....2..0..1....1..2..0....1..0..1....1..2..1
..0..2..0....2..0..2....1..0..2....1..2..0....2..0..1....0..2..0....2..0..2
..1..0..1....0..1..0....0..2..1....2..0..1....1..2..0....2..1..2....1..2..1
CROSSREFS
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
Sequence in context: A167159 A226918 A227391 * A164572 A067530 A259796
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 12 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 07:46 EDT 2024. Contains 372020 sequences. (Running on oeis4.)