login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167872 A sequence of moments connected with Feynman numbers (A000698): Half the number of Feynman diagrams of order 2(n+1), for the electron self-energy in quantum electrodynamics (QED), i.e., all proper diagrams including Furry vanishing diagrams (those that vanish in 4-dimensional QED because of Furry theorem). 15
1, 3, 21, 207, 2529, 36243, 591381, 10786527, 217179009, 4782674403, 114370025301, 2952426526767, 81864375589089, 2427523337157363, 76683680366193621, 2571609710380950207, 91265370849151405569, 3417956847888948899523 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) is the moment of order 2*n of the probability density function defined by rho(x) = sqrt(Pi/2)*exp(-x^2/2)/((x*phi(x)+1)^2 + Pi^2*x^2*exp(-x^2)), where phi(x) = Integral_{t=-oo..oo} t*log(abs(x-t))*exp(-t^2/2) dt.
REFERENCES
Roland Groux. Polynômes orthogonaux et transformations intégrales. Cepadues. 2008. pages 195..206.
LINKS
Trinh Khanh Duy and Tomoyuki Shirai, The mean spectral measures of random Jacobi matrices related to Gaussian beta ensembles, arXiv preprint arXiv:1504.06904 [math.SP], 2015.
Adrian Ocneanu, On the inner structure of a permutation: bicolored partitions and Eulerians, trees and primitives; arXiv preprint arXiv:1304.1263 [math.CO], 2013.
Wikipedia, Feynman diagram
FORMULA
Sum_{n>=0} a(n)/z^(2n+1) = (1/2)*(z-S(z)/(z*S(z)-1)) with S(z) = Sum_{n>=0} (2*n)!/(2^n*n!*z^(2*n+1)).
a(n) = (2*n - 1) * a(n-1) + 2 * Sum_{k=1..n} a(k-1) * a(n-k) if n>0. - Michael Somos, Jul 23 2011
a(0)=1; for n > 0, a(n) = A000698(n+2)/2 - Sum_{k=0..n-1} A000698(n+1-k)*a(k).
G.f.: 1/(1-3*x/(1-4*x/(1-5*x/(1-6*x/(1-7*x/(1-8*x/(...))))))) (continued fraction). - Philippe Deléham, Nov 20 2011
G.f.: 1/Q(0), where Q(k) = 1 - x*(k+3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Let A(x) be the g.f. of A127059 and B(x) be the g.f. of A167872. Then A(x) = (1 - 1/B(x))/x.
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k+3)/(1 - x*(2*k+4)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - (2*k+3)*x/((2*k+2)*x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
G.f.: G(0), where G(k) = 1 - x*(k+3)/(x*(k+3) - 1/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Aug 05 2013
a(n) = A115974(n)/2, see comments in A115974. See also A000698, A005411, A005412. - Robert Coquereaux, Sep 14 2014
a(n) ~ 2^(n + 3/2) * n^(n+2) / exp(n). - Vaclav Kotesovec, Jan 02 2019
G.f.: 1/(1 + x - 4*x/(1 - 3*x/(1 - 6*x/(1 - 5*x/(1 - 8*x/(1 - 7*x/(1 - ...))))))). - Peter Bala, May 30 2022
EXAMPLE
G.f. = 1 + 3*x + 21*x^2 + 207*x^3 + 2529*x^4 + 36243*x^5 + 591381*x^6 + ...
MATHEMATICA
(* f = A000698 *) f[n_] := f[n] = (2*n - 1)!! - Sum[f[n - k]*(2*k - 1)!!, {k, 1, n - 1}]; a[n_] := a[n] = f[n + 2]/2 - Sum[f[n + 1 - k]*a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 03 2013, from 3rd formula *)
nmax = 20; CoefficientList[Series[1/(1 + x + ContinuedFractionK[-(k - (-1)^k)*x, 1, {k, 3, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2022, after Peter Bala *)
PROG
(PARI) {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 3) * A[k-1] + 2 * sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 23 2011 */
CROSSREFS
Sequence in context: A199682 A348912 A309638 * A192314 A242635 A136223
KEYWORD
nonn
AUTHOR
Groux Roland, Nov 14 2009
EXTENSIONS
Name clarified from Robert Coquereaux, Sep 14 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 20:11 EDT 2024. Contains 372287 sequences. (Running on oeis4.)