The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110259 Numerators in the coefficients that form the even-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x. 7

%I #28 Dec 12 2021 20:36:40

%S 3,28,704,768,311296,1507328,3145728,130023424,7516192768,12884901888,

%T 2954937499648,12919261626368,52776558133248,774056185954304,

%U 66428094503714816,31525197391593472,308982963234634989568

%N Numerators in the coefficients that form the even-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.

%C Lim_{n->infinity} a(n)/A110260(n) = lim_{n->infinity} A110255(2*n)/A110256(2*n) = Pi.

%C The continued fraction expansion arctan(z) = z/(1 + z^2/(3 + 4*z^2/(5 + 9*z^2/(7 + ...)))) is due to Lambert - see Roegel, Section 1.2.1. - _Peter Bala_, Dec 02 2021

%H Paul D. Hanna, <a href="/A110259/b110259.txt">Table of n, a(n) for n = 1..200</a>

%H Denis Roegel, <a href="https://hal.archives-ouvertes.fr/hal-02984214/document">Lambert’s proof of the irrationality of Pi: Context and translation</a>, [Research Report] LORIA, 2020, hal-02984214.

%F a(n) = A110255(2*n).

%e arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +- ...

%e arctan(1/x) = [0; x, 3*x, (5/4)*x, (28/9)*x, (81/64)*x, (704/225)*x, (325/256)*x, (768/245)*x, (20825/16384)*x, (311296/99225)*x, (83349/65536)*x, (1507328/480249)*x, (1334025/1048576)*x, (3145728/1002001)*x, ...]

%e arctan(1/x) = 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x + ...))))).

%e The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}.

%e The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}.

%e From _Peter Bala_, Dec 02 2021: (Start)

%e Making use of the expansion 2*arcsin(sqrt(x)/2)^2 = Sum_{n >= 1} x^n/ (n^2*binomial(2*n,n)) we calculate

%e 3 + Pi = Sum_{n >= 1} (2^n)*n/binomial(2*n,n);

%e 28 + 9*Pi = Sum_{n >= 3} (2^n)*n*(n-1)*(n-2)/binomial(2*n,n);

%e 704 + 225*Pi = Sum_{n >= 5} (2^n)*n*(n-1)*...*(n-4)/binomial(2*n,n);

%e 45*(768 + 245*Pi) = Sum_{n >= 7} (2^n)*n*(n-1)*...*(n-6)/binomial(2*n,n);

%e 9*(311296 + 99225*Pi) = Sum_{n >= 9} (2^n)*n*(n-1)*...*(n-8)/ binomial(2*n,n).

%e It appears that Sum_{n >= 2*k+1} (2^n)*n*(n-1)*...*(n-2*k)/binomial(2*n,n) = N(2*k) + D(2*k)*Pi, where the ratios N(2*k)/D(2*k) are equal to the even-indexed partial quotients of Lambert's continued fraction representation of the inverse tangent of 1/x. (End)

%o (PARI) {a(n)=numerator(subst((contfrac( sum(k=0,2*n+2,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n+1],x,1))}

%Y Cf. A110260 (denominators), A110255/A110256 (continued fraction), A110257/A110258.

%K nonn,frac

%O 1,1

%A _Paul D. Hanna_, Jul 18 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 03:35 EDT 2024. Contains 373140 sequences. (Running on oeis4.)