The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110259 Numerators in the coefficients that form the even-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x. 7
3, 28, 704, 768, 311296, 1507328, 3145728, 130023424, 7516192768, 12884901888, 2954937499648, 12919261626368, 52776558133248, 774056185954304, 66428094503714816, 31525197391593472, 308982963234634989568 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Lim_{n->infinity} a(n)/A110260(n) = lim_{n->infinity} A110255(2*n)/A110256(2*n) = Pi.
The continued fraction expansion arctan(z) = z/(1 + z^2/(3 + 4*z^2/(5 + 9*z^2/(7 + ...)))) is due to Lambert - see Roegel, Section 1.2.1. - Peter Bala, Dec 02 2021
LINKS
Denis Roegel, Lambert’s proof of the irrationality of Pi: Context and translation, [Research Report] LORIA, 2020, hal-02984214.
FORMULA
a(n) = A110255(2*n).
EXAMPLE
arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +- ...
arctan(1/x) = [0; x, 3*x, (5/4)*x, (28/9)*x, (81/64)*x, (704/225)*x, (325/256)*x, (768/245)*x, (20825/16384)*x, (311296/99225)*x, (83349/65536)*x, (1507328/480249)*x, (1334025/1048576)*x, (3145728/1002001)*x, ...]
arctan(1/x) = 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x + ...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}.
From Peter Bala, Dec 02 2021: (Start)
Making use of the expansion 2*arcsin(sqrt(x)/2)^2 = Sum_{n >= 1} x^n/ (n^2*binomial(2*n,n)) we calculate
3 + Pi = Sum_{n >= 1} (2^n)*n/binomial(2*n,n);
28 + 9*Pi = Sum_{n >= 3} (2^n)*n*(n-1)*(n-2)/binomial(2*n,n);
704 + 225*Pi = Sum_{n >= 5} (2^n)*n*(n-1)*...*(n-4)/binomial(2*n,n);
45*(768 + 245*Pi) = Sum_{n >= 7} (2^n)*n*(n-1)*...*(n-6)/binomial(2*n,n);
9*(311296 + 99225*Pi) = Sum_{n >= 9} (2^n)*n*(n-1)*...*(n-8)/ binomial(2*n,n).
It appears that Sum_{n >= 2*k+1} (2^n)*n*(n-1)*...*(n-2*k)/binomial(2*n,n) = N(2*k) + D(2*k)*Pi, where the ratios N(2*k)/D(2*k) are equal to the even-indexed partial quotients of Lambert's continued fraction representation of the inverse tangent of 1/x. (End)
PROG
(PARI) {a(n)=numerator(subst((contfrac( sum(k=0, 2*n+2, (-1)^k/x^(2*k+1)/(2*k+1)), 2*n+2))[2*n+1], x, 1))}
CROSSREFS
Cf. A110260 (denominators), A110255/A110256 (continued fraction), A110257/A110258.
Sequence in context: A331196 A181588 A084880 * A276745 A354664 A015474
KEYWORD
nonn,frac
AUTHOR
Paul D. Hanna, Jul 18 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 06:37 EDT 2024. Contains 372498 sequences. (Running on oeis4.)