login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105278 Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!. 44
1, 2, 1, 6, 6, 1, 24, 36, 12, 1, 120, 240, 120, 20, 1, 720, 1800, 1200, 300, 30, 1, 5040, 15120, 12600, 4200, 630, 42, 1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1, 3628800, 16329600 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
T(n,k) is the number of partially ordered sets (posets) on n elements that consist entirely of k chains. For example, T(4, 3)=12 since there are exactly 12 posets on {a,b,c,d} that consist entirely of 3 chains. Letting ab denote a<=b and using a slash "/" to separate chains, the 12 posets can be given by a/b/cd, a/b/dc, a/c/bd, a/c/db, a/d/bc, a/d/cb, b/c/ad, b/c/da, b/d/ac, b/d/ca, c/d/ab and c/d/ba, where the listing of the chains is arbitrary (e.g., a/b/cd = a/cd/b =...cd/b/a). - Dennis P. Walsh, Feb 22 2007
Also the matrix product |S1|.S2 of Stirling numbers of both kinds.
This Lah triangle is a lower triangular matrix of the Jabotinsky type. See the column e.g.f. and the D. E. Knuth reference given in A008297. - Wolfdieter Lang, Jun 29 2007
The infinitesimal matrix generator of this matrix is given in A132710. See A111596 for an interpretation in terms of circular binary words and generalized factorials. - Tom Copeland, Nov 22 2007
Three combinatorial interpretations: T(n,k) is (1) the number of ways to split [n] = {1,...,n} into a collection of k nonempty lists ("partitions into sets of lists"), (2) the number of ways to split [n] into an ordered collection of n+1-k nonempty sets that are noncrossing ("partitions into lists of noncrossing sets"), (3) the number of Dyck n-paths with n+1-k peaks labeled 1,2,...,n+1-k in some order. - David Callan, Jul 25 2008
Given matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = D where D(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. - Tom Copeland, Aug 21 2008
An e.g.f. for the row polynomials of A(n,k) = T(n,k)*a(n-k) is exp[a(.)* D_x * x^2] exp(x*t) = exp(x*t) exp[(.)!*Lag(.,-x*t,1)*a(.)*x], umbrally, where [(.)! Lag(.,x,1)]^n = n! Lag(n,x,1) is a normalized Laguerre polynomial of order 1. - Tom Copeland, Aug 29 2008
Triangle of coefficients from the Bell polynomial of the second kind for f = 1/(1-x). B(n,k){x1,x2,x3,...} = B(n,k){1/(1-x)^2,...,(j-1)!/(1-x)^j,...} = T(n,k)/(1-x)^(n+k). - Vladimir Kruchinin, Mar 04 2011
The triangle, with the row and column offset taken as 0, is the generalized Riordan array (exp(x), x) with respect to the sequence n!*(n+1)! as defined by Wang and Wang (the generalized Riordan array (exp(x), x) with respect to the sequence n! is Pascal's triangle A007318, and with respect to the sequence n!^2 is A021009 unsigned). - Peter Bala, Aug 15 2013
For a relation to loop integrals in QCD, see p. 33 of Gopakumar and Gross and Blaizot and Nowak. - Tom Copeland, Jan 18 2016
Also the Bell transform of (n+1)!. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
Also the number of k-dimensional flats of the n-dimensional Shi arrangement. - Shuhei Tsujie, Apr 26 2019
The numbers T(n,k) appear as coefficients when expanding the rising factorials (x)^k = x(x+1)...(x+k-1) in the basis of falling factorials (x)_k = x(x-1)...(x-k+1). Specifically, (x)^n = Sum_{k=1..n} T(n,k) (x)_k. - Jeremy L. Martin, Apr 21 2021
LINKS
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
J-P. Blaizot and M. Nowak, Large N_c confinement and turbulence, arXiv:0801.1859 [hep-th], 2008.
David Callan, Sets, Lists and Noncrossing Partitions, arXiv:0711.4841 [math.CO], 2007-2008.
P. Codara, O. M. D'Antona, and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
S. Daboul, J. Mangaldan, M. Z. Spivey and P. Taylor, The Lah Numbers and the n-th Derivative of exp(1/x), Math. Mag., 86 (2013), 39-47.
G. H. E. Duchamp et al., Feynman graphs and related Hopf algebras, J. Phys. (Conf Ser) 30 (2006) 107-118.
R. Gopakumar and D. Gross, Mastering the master field, arXiv:hep-th/9411021, 1994.
G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4. - From Tom Copeland, Oct 01 2015
Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
D. E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO]. - From N. J. A. Sloane, Aug 21 2012
MacTutor History of Mathematics archive: Biography of Ivo Lah.
Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
N. Nakashima and S. Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
Kornelia Ufniarz and Grzegorz Siudem, Combinatorial origins of the canonical ensemble, arXiv:2008.00244 [math-ph], 2020.
W. Wang and T. Wang, Generalized Riordan arrays, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
Wikipedia, Lah number
FORMULA
T(n,k) = Sum_{m=n..k} |S1(n,m)|*S2(m,k), k>=n>=1, with Stirling triangles S2(n,m):=A048993 and S1(n,m):=A048994.
T(n,k) = C(n,k)*(n-1)!/(k-1)!.
Sum_{k=1..n} T(n,k) = A000262(n).
n*Sum_{k=1..n} T(n,k) = A103194(n) = Sum_{k=1..n} T(n,k)*k^2.
E.g.f. column k: (x^(k-1)/(1-x)^(k+1))/(k-1)!, k>=1.
Recurrence from Sheffer (here Jabotinsky) a-sequence [1,1,0,...] (see the W. Lang link under A006232): T(n,k)=(n/k)*T(n-1,m-1) + n*T(n-1,m). - Wolfdieter Lang, Jun 29 2007
The e.g.f. is, umbrally, exp[(.)!* L(.,-t,1)*x] = exp[t*x/(1-x)]/(1-x)^2 where L(n,t,1) = Sum_{k=0..n} T(n+1,k+1)*(-t)^k = Sum_{k=0..n} binomial(n+1,k+1)* (-t)^k / k! is the associated Laguerre polynomial of order 1. - Tom Copeland, Nov 17 2007
For this Lah triangle, the n-th row polynomial is given umbrally by
n! C(B.(x)+1+n,n) = (-1)^n C(-B.(x)-2,n), where C(x,n)=x!/(n!(x-n)!),
the binomial coefficient, and B_n(x)= exp(-x)(xd/dx)^n exp(x), the n-th Bell / Touchard / exponential polynomial (cf. A008277). E.g.,
2! C(-B.(-x)-2,2) = (-B.(x)-2)(-B.(x)-3) = B_2(x) + 5*B_1(x) + 6 = 6 + 6x + x^2.
n! C(B.(x)+1+n,n) = n! e^(-x) Sum_{j>=0} C(j+1+n,n)x^j/j! is a corresponding Dobinski relation. See the Copeland link for the relation to inverse Mellin transform. - Tom Copeland, Nov 21 2011
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A008277 (D = (1+x)*d/dx), A035342 (D = (1+x)^3*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). - Peter Bala, Nov 25 2011
T(n,k) = Sum_{i=k..n} A130534(n-1,i-1)*A008277(i,k). - Reinhard Zumkeller, Mar 18 2013
Let E(x) = Sum_{n >= 0} x^n/(n!*(n+1)!). Then a generating function is exp(t)*E(x*t) = 1 + (2 + x)*t + (6 + 6*x + x^2)*t^2/(2!*3!) + (24 + 36*x + 12*x^2 + x^3)*t^3/(3!*4!) + ... . - Peter Bala, Aug 15 2013
P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of A059110; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 23 2018
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates the Narayana matrix A001263. - Tom Copeland, Sep 23 2020
T(n,k) = A089231(n,n-k). - Ron L.J. van den Burg, Dec 12 2021
EXAMPLE
T(1,1) = C(1,1)*0!/0! = 1,
T(2,1) = C(2,1)*1!/0! = 2,
T(2,2) = C(2,2)*1!/1! = 1,
T(3,1) = C(3,1)*2!/0! = 6,
T(3,2) = C(3,2)*2!/1! = 6,
T(3,3) = C(3,3)*2!/2! = 1,
Sheffer a-sequence recurrence: T(6,2)= 1800 = (6/3)*120 + 6*240.
B(n,k) =
1/(1-x)^2;
2/(1-x)^3, 1/(1-x)^4;
6/(1-x)^4, 6/(1-x)^5, 1/(1-x)^6;
24/(1-x)^5, 36/(1-x)^6, 12/(1-x)^7, 1/(1-x)^8;
The triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9 ...
1: 1
2: 2 1
3: 6 6 1
4: 24 36 12 1
5: 120 240 120 20 1
6: 720 1800 1200 300 30 1
7: 5040 15120 12600 4200 630 42 1
8: 40320 141120 141120 58800 11760 1176 56 1
9: 362880 1451520 1693440 846720 211680 28224 2016 72 1
...
Row n=10: [3628800, 16329600, 21772800, 12700800, 3810240, 635040, 60480, 3240, 90, 1]. - Wolfdieter Lang, Feb 01 2013
MAPLE
The triangle: for n from 1 to 13 do seq(binomial(n, k)*(n-1)!/(k-1)!, k=1..n) od;
the sequence: seq(seq(binomial(n, k)*(n-1)!/(k-1)!, k=1..n), n=1..13);
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> (n+1)!, 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
nn = 9; a = x/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y a], {x, 0, nn}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 11 2011 *)
nn = 9; Flatten[Table[(j - k)! Binomial[j, k] Binomial[j - 1, k - 1], {j, nn}, {k, j}]] (* Jan Mangaldan, Mar 15 2013 *)
rows = 10;
t = Range[rows]!;
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
PROG
(Haskell)
a105278 n k = a105278_tabl !! (n-1) !! (k-1)
a105278_row n = a105278_tabl !! (n-1)
a105278_tabl = [1] : f [1] 2 where
f xs i = ys : f ys (i + 1) where
ys = zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
-- Reinhard Zumkeller, Sep 30 2014, Mar 18 2013
(Magma) /* As triangle */ [[Binomial(n, k)*Factorial(n-1)/Factorial(k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 31 2014
(Perl) use ntheory ":all"; say join ", ", map { my $n=$_; map { stirling($n, $_, 3) } 1..$n; } 1..9; # Dana Jacobsen, Mar 16 2017
(GAP) Flat(List([1..10], n->List([1..n], k->Binomial(n, k)*Factorial(n-1)/Factorial(k-1)))); # Muniru A Asiru, Jul 25 2018
CROSSREFS
Triangle of Lah numbers (A008297) unsigned.
Cf. A111596 (signed triangle with extra n=0 row and m=0 column).
Cf. A130561 (for a natural refinement).
Cf. A094638 (for differential operator representation).
Cf. A248045 (central terms), A002868 (row maxima).
Cf, A059110.
Cf. A089231 (triangle with mirrored rows).
Cf. A271703 (triangle with extra n=0 row and m=0 column).
Sequence in context: A091599 A048999 A066667 * A008297 A090582 A079641
KEYWORD
easy,nonn,tabl
AUTHOR
Miklos Kristof, Apr 25 2005
EXTENSIONS
Stirling comments and e.g.f.s from Wolfdieter Lang, Apr 11 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 06:27 EDT 2024. Contains 372020 sequences. (Running on oeis4.)