login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103371 Number triangle T(n,k) = C(n,n-k)*C(n+1,n-k). 25
1, 2, 1, 3, 6, 1, 4, 18, 12, 1, 5, 40, 60, 20, 1, 6, 75, 200, 150, 30, 1, 7, 126, 525, 700, 315, 42, 1, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1, 10, 405, 4320, 17640, 31752, 26460, 10080, 1620, 90, 1, 11, 550, 7425, 39600, 97020 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Columns include A000027, A002411, A004302, A108647, A134287. Row sums are C(2n+1,n+1) or A001700.
T(n-1,k-1) is the number of ways to put n identical objects into k of altogether n distinguishable boxes. See the partition array A035206 from which this triangle arises after summing over all entries related to partitions with fixed part number k.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
The o.g.f. of the (n+1)-th diagonal is given by G(n, x) = (n+1)*Sum_{k=1..n} A001263(n, k)*x^(k-1) / (1 - x)^(2*n+1), for n >= 1 and for n = 0 it is G(0, x) = 1/(1-x). - Wolfdieter Lang, Jul 31 2017
LINKS
Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 16.
R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv:1306.4628 [math.CO], 2013.
Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
FORMULA
Number triangle T(n, k) = C(n, n-k)*C(n+1, n-k) = C(n, k)*C(n+1, k+1); Column k of this triangle has g.f. Sum_{j=0..k} (C(k, j)*C(k+1, j) * x^(k+j))/(1-x)^(2*k+2); coefficients of the numerators are the rows of the reverse triangle C(n, k)*C(n+1, k).
T(n,k) = C(n, k)*Sum_{j=0..(n-k)} C(n-j, k). - Paul Barry, Jan 12 2006
T(n,k) = (n+1-k)*N(n+1,k+1), with N(n,k):=A001263(n,k), the Narayana triangle (with offset [1,1)]
O.g.f.: ((1-(1-y)*x)/sqrt((1-(1+y)*x)^2-4*x^2*y) -1)/2, (from o.g.f. of A001263, Narayana triangle). Wolfdieter Lang, Nov 13 2007.
From Peter Bala, Jan 24 2008: (Start)
Matrix product of A007318 and A122899.
O.g.f. for row n: (1-x)^n*P(n,1,0,(1+x)/(1-x)) = 1/(2*x)*(1-x)^(n+1)*( Legendre_P(n+1,(1+x)/(1-x)) - Legendre_P(n,(1+x)/(1-x)) ), where P(n,a,b,x) denotes the Jacobi polynomial.
O.g.f. for column k: x^k/(1-x)^(k+2)*P(k,0,1,(1+x)/(1-x)). Compare with A008459. (End)
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,1). (Cf. A194595, A197653, A197654). - Peter Luschny, Oct 20 2011
T(n,k) = A003056(n+1,k+1)*C(n,k)^2/(k+1). - Peter Luschny, Oct 29 2011
T(n, k) = A007318(n, k)*A135278(n, k), n >= k >= 0. - Wolfdieter Lang, Jul 31 2017
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 2 1
2: 3 6 1
3: 4 18 12 1
4: 5 40 60 20 1
5: 6 75 200 150 30 1
6: 7 126 525 700 315 42 1
7: 8 196 1176 2450 1960 588 56 1
8: 9 288 2352 7056 8820 4704 1008 72 1
9: 10 405 4320 17640 31752 26460 10080 1620 90 1
... reformatted. - Wolfdieter Lang, Jul 31 2017
From R. J. Mathar, Mar 29 2013: (Start)
The matrix inverse starts
1;
-2, 1;
9, -6, 1;
-76, 54, -12, 1;
1055, -760, 180, -20, 1;
-21906, 15825, -3800, 450, -30, 1;
636447, -460026, 110775, -13300, 945, -42, 1; (End)
O.g.f. of 4th diagonal [4, 40,200, ...] is G(3, x) = 4*(1 + 3*x + x^2)/(1 - x)^7, from the n = 3 row [1, 3, 1] of A001263. See a comment above. - Wolfdieter Lang, Jul 31 2017
MAPLE
A103371 := (n, k) -> binomial(n, k)^2*(n+1)/(k+1);
seq(print(seq(A103371(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 19 2011
MATHEMATICA
Flatten[Table[Binomial[n, n-k]Binomial[n+1, n-k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, May 26 2014 *)
PROG
(Maxima) create_list(binomial(n, k)*binomial(n+1, k+1), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */
(Haskell)
a103371 n k = a103371_tabl !! n !! k
a103371_row n = a103371_tabl !! n
a103371_tabl = map reverse a132813_tabl
-- Reinhard Zumkeller, Apr 04 2014
(Magma) /* As triangle */ [[Binomial(n, n-k)*Binomial(n+1, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 01 2017
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*binomial(n+1, k+1), ", "))) \\ G. C. Greubel, Nov 09 2018
CROSSREFS
Cf. A007318, A000894 (central terms), A132813 (mirrored).
Sequence in context: A093346 A115597 A325007 * A325015 A337414 A337410
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 03 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 4 00:44 EDT 2024. Contains 372225 sequences. (Running on oeis4.)