The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075245 x-value of the solution (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and having the largest z-value. The y and z components are in A075246 and A075247. 14
1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 20, 19, 19, 20, 20, 20, 20, 21, 21, 21 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,2
COMMENTS
See A073101 for more details.
a(n) = floor(n/4) + 1, at least up to n = 2000, except for some n = 8k+1 (k = 6, 9, 11, 14, 20, 21, 24, 29, 30, 35, 39, 41, 44, 45, 50, ...), where a(n) is one larger than a(n-1) and a(n+1). - M. F. Hasler, Jul 02 2022
LINKS
FORMULA
Conjecture: a(n) = floor(n/4) + d, with d = 1 except for some n = 8k+1 (k = 6, 9, 11, 14, 20, 21, 24, 29, 30, 35, 39, ...) where d = 2 . - M. F. Hasler, Jul 02 2022
EXAMPLE
For n = 3, we have a(3) = 1 = x in 4/3 = 1/x + 1/y + 1/z with y = 4 and z = 12 which is the largest possible z: Indeed, x < y < z gives 4/3 < 3/x, so only x = 1 and 2 are possible, and then with y < z, 2/y > 4/3 - 1/x is impossible for x = 2 < y < 12/5 and for x = 1 < y < 6 only y = 4 gives a solution.
MAPLE
A075245:= proc () local t, n, a, b, t1, largex, largez; for n from 3 to 100 do t := 4/n; largez := 0; largex := 0; for a from floor(1/t)+1 to floor(3/t) do t1 := t-1/a; for b from max(a, floor(1/t1)+1) to floor(2/t1) do if `and`(type(1/(t1-1/b), integer), a < b, b < 1/(t1-1/b)) then if largez < 1/(t1-1/b) then largez := 1/(t1-1/b); largex := a end if end if end do end do; lprint(n, largex) end do end proc; # [program derived from A192787] Patrick J. McNab, Aug 20 2014
MATHEMATICA
For[xLst={}; yLst={}; zLst={}; n=3, n<=100, n++, cnt=0; xr=n/4; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(4/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(4/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]; y++ ]; x++ ]]; xLst
PROG
(PARI) apply( {A075245(n, c=1, a)=for(x=n\4+1, 3*n\4, my(t=4/n-1/x); for(y=max(1\t, x)+1, ceil(2/t)-1, t-1/y >= c && break; numerator(t-1/y)==1 && [c, a]=[t-1/y, x])); a}, [3..99]) \\ M. F. Hasler, Jul 02 2022
CROSSREFS
Sequence in context: A144075 A128929 A257839 * A367329 A328301 A129253
KEYWORD
hard,nice,nonn
AUTHOR
T. D. Noe, Sep 10 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 23:15 EDT 2024. Contains 372524 sequences. (Running on oeis4.)